La sécrétion de l'ion hydrogène et acidification de l'urine.

Introduction.

> Doctour HAR
> MAIT: ASSIK ir!
> EN .-HYSIO
I. Production métabolique d'acides .
i-origine des ions $\mathrm{H}+$.
2- acides dits fixes.
3-accumulation de bases.
II. Rôles des systènes tampons

1-definition
2-systeme HCO - 1 CO 2 .
III. Régulation rénale:

1- conservation des HCO_{3} - sans excrétion d'ion H^{+}.

- rôle de la PCO2.
- Rôle de l'anhydrase carbonique.
- Siège de la réabsorption des HCO_{3}^{-}. active et à Tm.
- Variation de la réabsorption des HCO 3 - exemple :avec le VEC.

2-regeneration des HCO3-
IV. Excrétion rénale des ions H :

1-nessecité des tampons urinaires.
2-excretion d'acidité titrable.
3 -pouvoir tampon de lammonium.

Acidification de l'urine

Régulation réarale

Conservation des HCO3-filtrés sans excrétion d'ion $\mathrm{H}+$:
Dans ce cas les ions $\mathrm{H}+$ secrètés sont tamponnés par les HCO 3 - filtrés.
Ce mécanisme aboutit à la réabsorption d'une molécule de bicarbonate

Réabsorption des bicarbonates

- Le premier phénomène est la secrétions $\mathrm{H}+$ active en échange d'ion $\mathrm{Na}+$ dans la lumière tubulaire echangeur $\mathrm{H}+/ \mathrm{Na}+$
- Les ions $\mathrm{H}+$ forment avec les ions HCO - filtrés l'acide carbonique.
- L'acide carbonique se dehydrate libère H 2 O etCO2 qui diffuse dans la cellule grâce a l'anhydrase carbonique fixe sur la membrane luminaie du tube proximal.
- A l'intérieur de la cellule tubulaire hydratation du CO2 catalysée par AC puis dissociation de l'acide carbonique.
Passage du HCO 3 - de la cellule dans le liquide peritubulaire.

Regénération des bicarbonates:

elle permet l'excrétion journalière de 70 meq de $\mathrm{H}+$ et la récupération d'une quantité équivalente d'ion HCO 3 - qui ont été consomés pour la neutralisation des acides. Les ions $\mathrm{H}+$ sont sécrètés dans les urines sous forme libre, d'acidité titrable et d'ions ammonium. M. H_{4}^{+} L'excrétion a lieu auniveau du TD et CC.

Liquide peritubulaire	Cellules tubulaire rénales	Filtrat glomérulaire
$\mathrm{CO} 2$ HCO3- $\mathrm{Na}+$		

Lé
 2 䧲crétion d'acidité titrable :

Au niveau distal les ions $\mathrm{H}+$ secrètes sont tamponnés par tampons urinaires surtout les phosphates monoacide (dissodique), ils sont 登crètes sous forme de sel de sodium phosphate diacide (monossodique) dont on mesure la quantité par titration.

C'est la dissociation la plus importante.

$\mathrm{Na} 2 \mathrm{HPO} 4 \quad \mathrm{NaH} 2 \mathrm{PO} 4$

Pouvoir tampon de l'ammonium:
Le second tampon urinaire important est l'ion ammonium.

Oooteur HADCI EN . HYSIOLUGIE

Résumé du mécanisme rénal d'ecrétion d'ammoniaque.
1-desamination et transamination.
2 -glutaminase.

