INESSEM CONSTANTINE

$1^{\text {èr }}$ EMD de PHYSIOLOGIE

Durée： 45 minutes

Physiologie respiratoire

Répondre par une seule lettre（ A, B, C, D ou E）
A－1．3
B－ 1.2
C－ 2,4
D－4

E－1，2．3．4

Q1－Le dioxyde de carbone：A
（1）est 25 fois plus soluble que l＇oxygène
²－est principalement transporté dans le sang sous forme de carbhémoglobine
（3）joue un rôle majeur dans l＇équilibre acido－basique
A－représente un gaz difficilement transféré au cours des échanges alvéolo－capillaires
Q2－Le diaphragme ：
A－est un muscle très endurant du fait de sa richesse en fibres blanches
（2）représente le principal muscle ventilatoire
β－augmente le volume pulmonaire suite à son relâchement
4．）－stimulé par les neurones du Groupe Respiratoire Dorsal
Q3－La P50 ：
E．C？P⿸厂犬土口127
1．reflète l＇affinité de l＇hémoglobine pour l＇oxygène
（7）varie dans le même sens que le pouvoir oxyphorique
（3）est définie par la quantité d＇oxyhémoglobine observé lors d＇une $\mathrm{PaO}=27 \mathrm{mmhg}$
4．est augmenté au niveau du sang capillaire pulmonaire lors de l＇exercice physique
Q4－Les paramètres ventilatoires pouvant être mesurés par la spirométrie sont eprésentés par ：

1－Le VEMS（ volume expiratoire maximal par seconde）
2－la capacité vitale
\nRightarrow－la capacité résiduelle fonctionnelle
＊－La capacité pulmonaire totale

Q5- La membrane alvéolo-capillaire est caractérisée par: C】 \mathcal{A}-une faible surface

2-une faible épaisseur

מُ- un temps de passage supérieur de 0,5 secondes au temps d'équilibre à l'effort physique
(4) une capacité de transfert proche de $30 \mathrm{ml} / \mathrm{min} / \mathrm{mmhg}$ chez l'adulte sain de taille moyenne Q6. Les chémorécepteurs périphériques sont: $A \cup 万_{3}$

1. stimulés par l'hypoxémie et/ou l'hypercapnie
$\not 2$-localisés uniquement au niveau de la crosse aortique
3) capable d'influencer l'activité des neurones du Groupe Respiratoire Dorsal

A-à l'origine de l'hyper ventilation provoquée par l'exercice musculaire

Q7. Le surfactant est une substance :

1 - tensioactive qui diminue la compliance pulmonaire
22 -glycoprotéique synthétisée par les pneumocytes de type II
B-lipoprotéique synthétisée par les pneumocytes de type I
4.qui facilite le travail des muscles ventilatoires

Q8- L'étude précise de la conduction des voies aériennes périphériques nécessite:
(1)-la mesure du VEMS

2- la réalisation de courbe débit volume
(3.) I'étude de la compliance pulmonaire
(4) la mesure du DEM25

Q9- La captation du CO2 par l'Hb en milieu périphérique est facilitée par :

(1) I'effet Bohr
(2. -'effet Haldane
3.)'augmentation de la température
(4)- l 'importante consommation cellulaire d'oxygène

Q10. Les chémorécepteurs centraux sont:$2.4 ; 4$.

A-très sensibles à l'hypoxémie
(2)fortement inhibés par l'hypercapnie

FF-très sensible à l'hypercapnie du fait de la richesse en protéine du liquide céphalorachidien
(4.) à l'origine d'une protection des centres respiratoires contre l'acidose respiratoire

Physiologie Cardio Vasculaire

Répondre par une seule lettre (A, B, C, D, ou E)

γ - Le substrat de la rénine est L'angiotensinogene, protéine plasmatique inactive produite par le poumon.

2 - L'enzyme de conversion de L'angiotensine, produite par le foie transforme l'angiotensine 1 en angiotensine 2.

3 - L'angiotensine 2, en agissant sur le rein, augmente la synthèse et donc la libération d'aldostérone qui favorise la réabsorption de sodium et d'eau par le rein.
(4)- L'angiotensine 2 possède de multiples actions, toutes destinées à augmenter la pression artérielle.
Q2. Dans la régulation du débit cardiaque: $C J$
\not - Au repos, le tonus parasympathique est beaucoup plus important chez un individu sédentaire que chez un sportif.
(2) Il est possible d'agir sur deux paramètres: la fréquence cardiaque et le volume d'éjection systolique.
(3)- La fréquence cardiaque augmente avec L'hyperthermie.
4.- Lors d'une hémorragie importante, on a une augmentation du tonus sympathique pour maintenir un débit cardiaque suffisant.
Q 3.- La pression artérielle moyenne (PAM): B
\mathcal{X}-La PAM est contrôlée par des systèmes reflexes, indépendants les uns des autres.
2. $\mathrm{PAM}=\mathrm{Qc} \times$ RPT (Qc = débit cardiaque - RPT : résistances péripheriques totales)
$\not \subset$ - La PAM est contrôlée par des systèmes reflexes uniquement à court et moyen terme.
4. Au repos et en condition physiologique, la PAM est voisine de 100 mmHg Q4. Le nœud sinusal au niveau du cœur: A $A \checkmark$

1. Est capable de générer automatiquement des impulsions électriques.
\mathcal{Z}^{\prime} - Il est situé dans L'oreillette gauche, à proximité du sinus coronaire.
(3. Est aussi appelé centre rythmogène car c'est de là que naissent les impulsions électriques.

4- II est constitué majoritairement de myofilaments contractiles, permettant d'assurer la contraction du cœur.

Q 5) La résistance extrinsèquę liée à la tension Intra Myocardique est diminuée: A
(1. Lors de la systole
(2)- Dans l'épicarde
(3) Dans l'endocarde

4 - Lors de la diastole

X-La réponse contractile précède la dépolarisation;
$\mathscr{2}$ - L'ouverture des canaux calciques est indépendante du potentiel membranaire.
$\not ̋$ - L'élément responsable de la contraction est l'ion potassium
(4)- La période réfractaire absolue explique que le muscle cardiaque ne soit pas tétanisable contrairement au muscle squelettique

Q7. Lors de la contraction iso volumétrique du ventricule gauche: A
(1)- La pression intra ventriculaire augmente.
2^{\prime} - La pression aortique augmente.
3. Le volume ventriculaire ne varie pas.

A - La valve mitrale est ouverte
Q8. L'adaptation Cardio vasculaire lors de l'exercice musculaire se fait par: EV
(1) Une Constriction des $V x$, artérioles et sphincters pré capillaires
(2)- Une Augmentation de I'Inotropisme

Une Stimulation sympathique importante
Une redistribution du sang aux muscles en activité

Q 9.- Lors du passage en orthostatisme on obserye C V

X- Une augmentation de la fréquence de décharges des Barorécepteurs
(2) Une diminution de la fréquence de décharges des Barorécepteurs
(3)- Une libération du CVM latéral
(4)- Une vasoconstriction

Q 10. Les différentes phases du cycle cardiaque: C
1- Pendant la relaxation iso volumétrique on observe le relâchement du ventricule gauche alors que les valves aortique et mitrale sont ouvertes
2. L'éjection ventriculaire est divisée en 2 phases: une phase active puis une phase passive.
(3)- Lors de la contraction iso volumétrique on observe une augmentation de la pression intra ventriculaire alors que la pression aortique diminue.
4. Le remplissage ventriculaire est divisé en 3 phases: la proto diastole, la méso diastole et la télé diastole

