Université de Constantine Contrôle $\mathbf{n}^{\circ} \mathbf{2}$ Biophysique $2^{\text {ème }}$ année

$20 / 05 / 2013$ Faculté de Médecine

Département de Médecine
Durée : $\mathbf{5 5} \mathrm{mn}$
\mathbf{Q}_{1} :L'osmose est un transfert du solvant à travers une membrane. Il est due uniquement_à : A) la différence de concentration, $\quad B /$ la différence de concentration et de pression, \quad Q/ la différence de pression, $\quad D /$ la différence de température, $\quad E /$ aucune réponse n'est vraie.
Q_{2} : L'unité de l'activité d'une solution s'exprime en : \mathbb{C}
(4) g. $\mathrm{I}^{-1}, \mathrm{~B} / \mathrm{l}^{-1}$, C/mol. I^{-1} D/ osmol. $\mathrm{l}^{-1} \quad \mathrm{E} / \mathrm{Eq} / \mathrm{l}$
Q_{3} : Une solution idéale est une solution :
A/ très concentrée, B diluée, \quad // dont les interactions intermoléculaires sont modifiées par la présence du soluté, \quad b/ dont les interactions intermoléculaires ne sont pas modifiées par la présence du solvant, E/aucune réponse n'est vraie.
Q_{4} : La mobilité d'un ion se trouvant dans un champ électrique unité s'écrit :
 $q \mathrm{E} / 6 \pi \eta \mathrm{r}, \quad B^{\prime} / \mathrm{q} / 6 \mathrm{E} \pi \eta \mathrm{r}$, (Cl) $q / 6 \pi \eta \mathrm{r}$, Pi $6 \pi \eta \mathrm{r} / \mathrm{q}$, \& \&/ $6 \pi \eta \mathrm{r} / \mathrm{qE}$. Q_{5} : Lorsque la température diminue, le flux de soluté diffusant à travers la membrane : A A) diminue, $\quad \beta /$ augmente, $\quad \varnothing /$ reste constant, $\quad D / / /$ 'annule, $E /$ devient négligeable.
\underline{Q}_{6} : Soit deux solutions de saccharose de concentration différentes C_{1} etC C_{2} séparée par une membrane poreuse perméable à cette molécule. Si on double la section S de la membrane et la concentration des deux compartiments. Le flux du saccharose à travers la membrane est alors :
(A/ divisé par 4, $\quad B /$ multiplié par 2, \quad /ne change pas, $\quad D /$ divisé par 2, (E) multiplié par 4.
\mathbf{Q}_{7} : L'absorbance ou densité optique est liée à : A
(A) coefficient d'extinction, $\mathrm{B} /$ transmission de l'onde, $\mathrm{C} /$ l'atténuation de l'onde électromagnétique, $\quad \mathrm{D} /$ l'ionarité $\quad \mathrm{E} /$ concentration osmolale.
$\mathbf{Q}_{8}:$ Les radiations réémises par certaines solutions claires ont une longueur d'onde :
$\mathrm{A} /$ inférieure à la longueur d'onde incidente, $\quad \mathrm{B} /$ infinie, $\quad \mathrm{C} /$ nulle, (D) égale à la longueur d'onde incidente, Esupérieure à la longueur d'onde incidente.
Q_{2} : La concentration équivalente en mmole Eq par litre de l'ion $\mathrm{Fe}^{+3}(\mathrm{M}=56 \mathrm{~g} / \mathrm{mol}) 2 \mathrm{M}$ vaut: \qquad
A $/ 0,028$
B/ 0,006
C/ 6
D/ 28
(E) aucune réponse n'est vraie.
\underline{Q}_{10} : Un médicament utilisé pour soigner les rhumes est présenté sous forme d'ampoules non buvables de 5 ml . Chaque ampoule contient 250 mg d'eucalyptol de masse molaire $154 \mathrm{~g} / \mathrm{mol}$. Le couple des concentrations pondérale (g / l) et molaire ($\mathrm{mol} / \mathrm{l}$) vaut : © $\mathrm{A}(49,3 ; 0,32)$, \#B/ $(0,32 ; 60)$, C/ $(4,93 ; 3,2), \quad$ pl$(154 ; 50), \quad$ F/ $(0,49 ; 32)$
\mathbf{Q}_{11} : Une source sonore émettant un son de 20 dB . Lorsqu'on triple sa puissance surfacique ;son niveau sonore de 20 dB est : A/ invariable, \quad B) augmenté de $4,7 \mathrm{~dB}, \quad \mathrm{C} /$ multiplié par 3 , $\mathrm{D} /$ augmenté de 3 dB , $\mathrm{E} /$ divisé par 2.
\mathbf{Q}_{12} : La gamme de fréquences des ultrasons qui font partie des ondes électromagnétiques non $A-D$ ionisants est :
(A) variable,
$B /$ constante, $\quad C /$ étroite,
$\mathrm{D} /$ large, $\mathrm{E} /$ aucune réponse n'est vraie
Q_{13} : Dans le milieu ambiant, la pression acoustique : A/est nulle, $\quad \mathrm{B} /$ dépend de la pression atmosphérique, C/ dépend des conditions de mesure physiologiques, D/existe toujours, Étrès faible.
Q_{14} : L'impédance dépend uniquement de: de la célérité, $\mathrm{B} /$ de la densité du milieu de propagation, C/la fréquence, (D) la célérité et la masse volumique, E/aucune réponse n'est vraie.
\mathbf{Q}_{15} : L'exploration ultrasonore par rapport celle en optique donne :

A) un faible contraste,	$B /$ la même qualité de l'image,
(D) une image lumineuse,	F/ une image sombre,

\mathbf{Q}_{16} : L'atténuation de l'intensité de l'onde ultrasonore est: E
A/ constante le long de son parcours, B/ inversement proportionnelle à la profondeur de pénétration, C' inversement proportionnelle au carré de la profondeur de pénétration, (Di) en exponentiel décroissant, E) en exponentiel croissant
\mathbf{Q}_{17} : En vélocimétrie Doppler, lorsque les globules rouges se rapprochent de la sonde, il ya : $A-D$ A/compression des ondes, $\quad \beta /$ décompression des ondes, C/grande longueur d'onde, (D)grande fréquence, E/aucune réponse n'est vraie.
Q_{18} : Lors de la propagation de l'onde ultrasonore dans un milieu : \subset
A/ seule la composante transversale existe, (Beule la composante longitudinale existe,
$\mathrm{C} /$ les deux composantes transversales et longitudinale existent, D/aucune des composantes
transversale et longitudinale existe, E/aucune réponse n'est vraie.
$\underline{Q}_{19}:$ Le classement, par ordre croissant des célérités dans les milieux suivants: B sang (1), air (2), os compact (3), foie(4), vide (5)est : A/2,1,3,4,5 B/ $/ 5,2,1,4,3 \quad C / 3,4,1,2,5$
D/ 3,4,1,2,5 E/ 2, 1, 4,3,5
Q_{20} : Dans un examen échographique :
$\mathrm{A} /$ un gel est utilisé pour la sécurité du patient, $\quad \mathrm{B} /$ la sonde doit être inclinée
Cll'émetteur des ultrasons doit être bien éloigné du patient,
Ofil faut diminuer la fréquence pour avoir une bonne exploration en profondeur,
EXil faut augmenter la fréquence pour avoir une bonne exploration en profondeur.
**2 Wh\& 1 C MEDECTNE

Département de Médecine de Constantin BIOPHYSIQUE - 02ème Année C2 *20

Corrigé Type

Bareme uniforme : 1 point(s) par question

N°	Rép./Variantes 182		
1	B	E	
2	C		
3	B		
4	C		
5	A		
6	E		
7	AB		
8	DE		
9	E		
10	A		
11	B		
12	E		
13	DE		
14	D	E	
15	C		
16	CD		
17	AD		
18	BC	E	
19	B		
20	D		

Pr. Samia BOUHEDIA. Faculté de Médecine Université de Constanting

