Contrôle n ${ }^{\circ} \mathbf{3}$ de physique

(A chaque question correspond une seule reponse juste)

Q1/ L. interaction électrique entre deux particules chargées est
A : proportionnelle au carré de la distance qui sépare les deux charges \mathbf{B} : proportionnelle aux charges
C : inversement proportionnelle aux charges \mathbf{D} : proportionnelle à la distance qui sépare les deux charges
E: aucune des réponses n'est vraic
Q2. La permittivité du vide (E_{0}) est exprimée en : $\quad \mathbf{A}: \mathrm{N}^{2} /\left(\mathrm{C}^{2} \mathrm{~m}^{2}\right) \quad \mathbf{B}: \mathrm{m}^{2} /\left(\mathrm{C} \cdot \mathrm{N}^{1}\right) \quad \mathbf{C}: \mathrm{N}^{1} \mathrm{~m}^{2} / \mathrm{C}$
I) : $\mathrm{C}^{2} /\left(\mathrm{N} \mathrm{m}^{2}\right) \quad$ E : aucune des réponses n'est vraie.

Q3/ Le champ électrique crêé en un point M par une charge négative
A : est dirigé vers cette charge \mathbf{B} : est inversement proportionnel à cette charge
C : ne dépend pas de cette charge D: proportionnel au carré de cette charge
E: aucune des réponses n 'est vraie
Q4/Soit $V(x, y, z)$ le potentiel électrique au point M, tel que : $V(x, y, z)=y^{2}+x y z$ alors les composantes cartésiennes du champ électrique sont : A: $y z ; 2 y+x z ; x y) \quad \mathbf{B}:(-y z ; 2 y+x z ; x y)$
$\mathbf{C}:(y z ;-2 y-x z ; x y) \quad \mathbf{D}:(-y z ;-2 y-x z ;-x y) \quad$ E: aucune des réponses n 'est vraie
Q5/ Le moment dipolaire est un vecteur :
A : dont l'unité est le coulomb/mètre $\quad \mathbf{B}$: dépendant du potentiel électrique
C: dirigé de la charge ((\cdot) vers la charge $(+) \quad$ D : dirigé de la charge $(+)$ vers la charge $(-)$
E : aucune des réponses n 'est vraie
Q6. Pour un conducteur chargé, en équilibre :
A: le potentiel électrique n'est pas constant à la surface $\quad \mathbf{B}$: La distribution de charges est volumique
C : les électrons qu'il contient sont au repos en moyenne
D : le pouvoir des pointes est évité en lui donnant des formes convexes de fortes courbures
E: aucune des réponses n'est vraie
O7/ Dans la forme locale de la loi de joule, la puissance dissipée par effet joule est proportionnelle à E' et le facteur de proportionnalité est : \mathbf{A} : la conductivité \mathbf{B} : la résistivité \mathbf{C} : la conductance
D : la densité volumique de charges E: aucune des réponses n'est vraie
O8. La conductance s'exprime en :
A: Ohm / mètre
B: Siemens / metre
C: Siemens D: Ohm
E: aucune des réponses n'est vraie

Q9/ Les enregistreurs mécaniques à plume :
A : sont des organes d'enregistrement à basse impédance d'entrée
B : sont des organes d'enregistrement à haute impédance d'entrée
C : sont des enregistreurs sans inertic D : ne consomment pas de courant
E : aucune des réponses n'est vraie
O10. Soit un noyau d'uranium fixe de charge positive $Z \mathrm{e}\left(Z=92, \mathrm{e}=1,6,10^{-19} \mathrm{C}\right)\left(\mathrm{K}=9.10^{9} \mathrm{~S} . \mathrm{I}\right)$
Le module du champ électrique créé par ce noyau à une distance $\mathrm{r}=10^{-3} \mathrm{~m}$ vaut :
A : $132,48 \mathrm{NC}^{-1}$
B: $13.25 \mathrm{NC}^{1}$
C : $1,32 \mathrm{NC}^{-1}$
D : $0,13 \mathrm{NC}^{-1}$
E: aucune des réponses n'est vraie

Q11/ (Suite de Q10) Le potentiel electrique crée par ce noyau à une distance $\mathrm{r}=10^{-3} \mathrm{~m}$ vaut :
$\begin{array}{llll}\text { A: } 132,4810^{-3} & \text { Volt } & \text { B: } 132,4810^{-6} & \text { Volt } \\ \text { E: aucune des reponses n'est vraie } & \text { C }: 132,48 \text { Volt } & \text { D: } 13,25 \text { Volt }\end{array}$

Q12 (Suite de Q10) On amène une partucule at (noyau d'Itehum dv charge positive 2e)
depuis l'infini jusqu'ì la distance $r-10^{\prime} \mathrm{m}$ du noyaw Le module de la force electrique agisant sur a vaut
A: 423.94. $10^{10} \mathrm{~N}$
B: $42.39 \quad 10^{19} \mathrm{~N}$
C: $4.2410^{14} \mathrm{~N}$
D : $0.42 \quad 10^{19} \mathrm{~N}$

E aucurie des reponses n'est vrate
O13/ Soit le montage suivant

I a capacité équivalente est égale al
A: C
B : 2C
C: 3C
D : 4 C
E. aucune des réponses n'est vraie

Q14/ Soit le montage suivant

La résistance équivalente est égale à :
A: R
B: 2R
C : 3R
D : 5R
E: aucune des reponses n'est vraie

Q15/ Deux condensateurs C_{1} et C_{2} montés en parallêle et chargés sous 100 V ont pour énergies $10^{5} \mathrm{~J}$ et $10^{-5} \mathrm{~J}$ alors la capacité C_{1} du condensateur est égale
A: $2 \mu \mathrm{~F}$
B: 2 nF
C: 2 pF
D : 5 pF
E: aucune des réponses n 'est vraie

Q16((suite de Q15) La capacité C_{2} du condensateur est égale :
A: $2 \mu \mathrm{~F}$
B: 2 nF
C: 2 pF
D : 5 pF
E: aucune des réponses n'est vraie

Q17/ Un radiateur electrique de 1800 W fonctionne sous une tension continue de 240 V , I'intensité du courant est égale à :
A : 0.75 A
B : $7,5 \mathrm{~A}$
C : $0,3 \mathrm{~A}$
D : 3 A
E: aucune des réponses n'est vraie

Q18 (suite de Q17) La résistance du fil est égale à :
A : $0,32 \Omega$
B : $3,2 \Omega$
C : 32Ω
D : $22,2 \Omega$
E: aucune des réponses n'est vraic

Q19/ (suite de Q17) Ce fil est constitué d'un alliage de résistivité $\rho=\pi 10^{-7} \Omega \mathrm{~m}$. Sachant que sa section est de $2,25 \pi 10^{-2} \mathrm{~mm}^{2}$, sa longueur est égale à :
A: 0.72 m
B : 7.2 m
C : 72 m D : 720 m
E: aucune des réponses n'est vraie

Q20 On considère le circuit suivant :

$$
\begin{aligned}
& E_{1}=6 \mathrm{~V}, \mathrm{E}_{2}=2 \mathrm{~V} \\
& \mathrm{R}_{1}=3 \Omega, \mathrm{R}_{2}=1 \Omega
\end{aligned}
$$

L'intensité du courant I est égale à :
A: 2A
B: 1.5 A
C: 1 A
D : 0.5 A
E: aucune des réponses n'est vraie

Barème : $\left(Q_{1} \rightarrow Q_{20}, 1 p t\right)$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A			X				X		X				X							X
B	X										x			x		X	X		X	
C					X	X		X							X			X		
D		X		X						X		X								
E																				

Barème: $\left(\mathrm{Q}_{1} \rightarrow \mathrm{Q}_{200}, 1 \mathrm{pt}\right)$

