Contrôle $n^{\circ} \mathbf{3}$ de physique

(A chaque question correspond une seule réponse juste)

Q1/ La force électrique exercée par une charge q ' sur une charge q placée au point M:
A : ne dépend pas de la charge q \mathbf{B} : ne dépend pas de la charge q, C): dépend des deux charges q et q,
\mathbf{D} : proportionnelle au carré de la distance qui sépare les deux charges \mathbf{E} : aucune des réponses n'est vraie.

- O2f La permittivité du vide :
(5) : cst égale à $8,85410^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2} \quad \mathrm{~B}:$ est égale à la permittivité du milieu

C : est égale à la permittivité relative du milieu D: c'est la constante diélectrique
\mathbf{E} : aucune des réponses n'est vraie.
Q3/ Dans un conducteur chargé, en équilibre :
A : les lignes de champ sont tangentes à la surface du conducteur
B: le potentiel électrique est variable dans le volume
C : le champ électrique est plus grand dans les parties concaves que dans les parties convexes

- O4/ Le moment résultant d'un dinôle de moment dipolaire $\overrightarrow{\mathrm{D}}$ placé dans un shane uniforma $\overrightarrow{\mathrm{L}}$ cat ćğai: : $\vec{A}: \vec{P} \cdot \vec{E}$ (D: $\vec{r} \wedge \vec{E} \quad \vec{C}:-\vec{r} \cdot \vec{E} \quad \boldsymbol{V}: q \vec{P} \wedge \vec{E} \quad E:$ aucune des reponses n est vTaie

A : la résistivité.
B: la conductivité \mathbf{C} : la résistance
D : la conductance
E: aucune des réponses n'est vraie

O6/I'nsciliogranhe eathorigue :
Á: est un organe d'enregistrement à haute impédance d'entrée
B: est un organe d'enregistrement à basse impédance d'entrée
C : est un enregistreur magnétique
D: est un enregistreur mécanique
E: aucune des réponses n'est vraie

Q71 Trois charges électriques ponctuelles -q , +q et $+3 \mathrm{q}(q>0)$ placées en $M_{:}(-a, 0), O(0,0)$ et $M_{2}(a, 0)(a>0)$.
La force électrique exercée sur la charge se trouvant en $O(0,0)$ est égale à :
A: $-\mathrm{Kq}^{2}{ }^{2} / \mathrm{a}^{2}$
B: $-2 K q^{2} \overrightarrow{\mathrm{i}} / \mathrm{a}^{2}$
C: $-3 \mathrm{Kq}^{2 \overrightarrow{\mathrm{i}} / \mathrm{a}^{2}}$
D : $-4 K q^{2} \overrightarrow{\mathrm{i}} / \mathrm{a}^{2}$
E: $\overrightarrow{0}$

O8/ (suite de la question 7) Le champ électrique en $O(0,0)$ vaut :

$\mathrm{A}:-4 \mathrm{Kqi} / \mathrm{a}^{2}$
B: $-3 \mathrm{Kq} \mathrm{i} / \mathrm{a}^{2}$
C: $-2 \mathrm{Kq} \mathrm{i} / \mathrm{a}^{2}$
D: $-\mathrm{Kq} \overrightarrow{\mathrm{i}} / \mathrm{a}^{2}$
E: $\overrightarrow{0}$

Q9/(suite de la question 7) Le champ électrique on $\mathrm{M}_{1}(-\mathrm{a}, 0)$ vaut :
A: $-5 \mathrm{Kqi} / 4 \mathrm{a}^{2}$
B: $-\mathrm{Kq} \overrightarrow{\mathrm{r}} / 4 \mathrm{a}^{2}$
$\mathrm{C}:-7 \mathrm{Kq} \overrightarrow{\mathrm{t}} / 4 \mathrm{a}^{2}$
D: $-3 \mathrm{Kq} \overrightarrow{\mathrm{i}} / 4 \mathrm{a}^{2}$
E: $\overrightarrow{0}$

O10/ (suite de la question 7) Le potentiel électrique en O est égale :
A: $2 \mathrm{Kq} / \mathrm{a}$
B: $2 \mathrm{Kq} / \mathrm{a}^{2}$
C: $2 \mathrm{Kq} q \mathrm{a}^{3}$
D : $2 \mathrm{Kq} / \mathrm{a}^{4}$
E: aucune des réponses n'est vraie

Q11 (suite de la question 7) Si $\mathrm{q}=5 \mathrm{nC}$ et $\mathrm{a}=0,05 \mathrm{~m}\left(\mathrm{~K}=9.10^{9} \mathrm{~S} .1\right)$ alors le potentiel électrique en O est égale à :
A: 1800 V
B: 180 V
C: 18 V
D : $1,8 \mathrm{~V}$
E: aucune des réponses n'est vraie

- Q12 Soit le montage suivant:

1 a capacité équivalente est égale à :
A: 6C
B: 4C
$\mathrm{C}: 2 \mathrm{C}$
D:C E: aucune des réponses n'est vraie

- Q13 Soit le montage suivant :

La résistance équivalente est égale à :
A: 9R
B: 7R
C: 5R
D : 3R
E: aucune des réponses n'est vraie

- Q14 Trois condensateurs $C_{1}=300 \mathrm{nF} C_{2}=0.3 \mu F$ et $C_{3}=0,4 \mu \mathrm{~F}$ sont montés en parallèle et chargés l'énergic emuagasinée dans le condensateur équivalent a pour valeur $2,42 \quad 10^{-2}$ Joules La capacité equivalente C_{eq} est égale à :
$\mathrm{A}: 10^{10 \mathrm{~F}}$
B: $10^{-8} \mathrm{~F}$
$\mathrm{C}: 10^{-6} \mathrm{~F}$
D : $10^{-4} \mathrm{~F}$
\mathbf{E} : aucune des réponses n'est vraie

O15/ (suite de la question 14) La charge sur le condensateur équivalent est égale à :
A: $2,210^{-10} \mathrm{C}$
B: $\mathbf{2 , 2 1 0}{ }^{\circ} \mathrm{C}$
C: $2,210^{-6} \mathrm{C}$
D: $2,210^{-4} \mathrm{C}$
E: aucune des réponses n'est vraie

- O16/ On veut fabriquer une résistance R de 1Ω en utilisant un fil de cuivre cylindrique de section $10^{-6} \mathrm{~m}^{2}$ et de résistivité $\rho=1,610^{-8} \Omega \mathrm{~m}$
La longucur du fil utilisée est:
A: 0.625 m
B: $6,25 \mathrm{~m}$
C: $62,5 \mathrm{~m}$
D: 625 m
E: aucune des réponses n'est vraie
- O17/(suite de la question 16 On relie cette résistance aux bornes d'une source de courant continu (pile) de t.e.m. $\mathrm{E}=5$ voit. En supposant la résistance interne de la pile négligeable. l'intensité du courant qui t.....riv... ... iर...........
A: i.A B : 0.5A
$C: 2 A$
D: i.5A
E:auchne des réporises n'est vraie
- OI8Y (suite de la question 16) La puissance dissipée par effet joule dans la résistance est :
A: 2.5 W
B: 2W
C: 1,5W
D: 1W
E: aucune des réponses n'est vraie

Q19/(suite de la question 16) On place en série avce R. aux bomes de la pile. un moteur M de f.c.e.m. c-3,5 V' ct dc résistance inteme $r^{\prime}=5 \Omega$

L'intensité F ' du courant traversant le moteur est égale :
A: $0,4 \mathrm{~A}$
$\mathrm{B}: 0.3 \mathrm{~A}$
$\mathrm{C}=0,1 \mathrm{~A}$
D: $0,2 \mathrm{~A}$
\mathbf{E} : aucune des réponses n'est vraie
$\mathbf{0 2 0}$ On considère le circuit suivant :
L 'inteasité du courant i est égale à :

$$
\begin{aligned}
& \mathrm{E}_{4}=5 \mathrm{~V}, \mathrm{E}_{2}=1 \mathrm{~V}, \mathrm{E}_{3}=2 \mathrm{~V} \\
& \mathrm{R}_{1}=4 \Omega, \mathrm{R}_{2}=1 \Omega, \mathrm{R}_{3}=3 \Omega
\end{aligned}
$$

A: 0,5A
B: 1A
C: 1,5A
D : 2A
E: aucune des réponses n'est vraie

Barème : $\left(\mathrm{Q}_{1} \rightarrow \mathrm{Q}_{20}, 1 \mathrm{pt}\right)$

