CENTRE UNIVERSITAIRE ZIANE ACHOUR

Département de TC.SETI-LMD

Institut des sciences et de la technologie

ÉPREUVE DE RATTRAPAGE

MODULE: Mécanique du point matériel

Septembre 2007 Durée : 1 h 30 min

EXERCICE 01: (10 points)

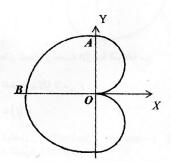
Un cycliste roulant à vitesse constante V > 0 sur une route en ligne droite observe, à un instant donné, une voiture distante de d qui démarre devant lui avec une accélération constante a > 0.

- Ecrire l'équation horaire du cycliste et de la voiture; donner la nature de chacun des mouvements (on prend comme origine des temps t = 0 l'instant où la voiture démarre, et comme origine des espaces la position du cycliste à cet instant).
- 2. Si a et V sont fixées, montrez que le cycliste rattrape la voiture seulement si :

$$d \leq \frac{V^2}{2a}$$

- Déterminer le temps l₁ de la course poursuite (le temps où le cycliste rattrape la voiture) en fonction de a, V, et d.
- Tracer les diagrammes des espaces du cycliste et de la voiture (sur le même graphe).
 Discuter graphiquement les divers scénarios de la course poursuite.
- 5. A.N. Calculer les temps de croisement pour d = 10m, $\alpha = 2$ m/s², V = 36 km/h.

EXERCICE 02: (10 points)


Le mouvement décrit par la trajectoire de la figure est appelé cardioïde il est donnée par l'équation suivante :

$$r(\theta) = R - R \cdot \cos \theta$$

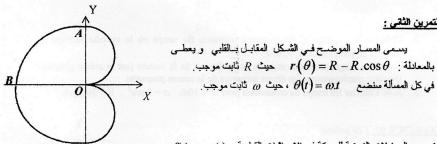
Où R est une constante positive.

Dans ce problème, nous poserons $\theta(t) = \omega t$

Où ω est une constante positive.

- 1. Donnez les équations horaires du mouvement en coordonnées polaires r(t) et $\theta(t)$.
- 2. Donnez les coordonnées polaires θ et r des point O, A et B représentés sur la trajectoire, et calculez leurs temps $0 \le t \le T$ ($T = 2\pi/\omega$).
- Calculez les composantes radiale V_t(t) et transversale V_t(t) du vecteur vitesse (coordonnées polaires) en fonction de t.
- 4. En déduire que le module de la vitesse est donné par : $V(t) = 2R\omega . \sin\left(\frac{\omega}{2}t\right)$

(On utilise $1 - \cos(\alpha) = 2 \cdot \sin^2(\alpha/2)$)


- 5. Calculez les composantes radiale $a_t(t)$ et transversale $a_t(t)$ du vecteur accélération (coordonnées polaires) en fonction de t
- 6. Calculez la composante tangentielle $a_{\rm T}$ du vecteur accélération en fonction de t.
- 7. En déduire le rayon de courbure ρ à $t = \pi l \omega$.

الامتحان الاستدراكي

التمرين الأول: V>0 على خط مستقيم، يشاهد في لحظة n سيارة تبعد عنه بمسافة d نتطلق يتحرك دراج بسرعة ثابتة dأمامه بتسارع ثابت 0 < ه.

- 1. أكتب المعادلات الزمنية لكل من الدراج و السيارة، معطيا طبيعة كل حركة (نعتبر مبدأ الأزمنة $\frac{0}{2}$ لحظة انطلاق العيارة، و مبدأ الإحداثيات وضعية الدراج في تلك اللحظة).
 - $d \leq \frac{r}{2}$ و a، بين أن شرط التحاق الدراج بالسيارة هو: $a \in \mathcal{C}$ 2.

 - حدد f_1 زمن التحاق الدراج بالسيارة بدلالة a ، V و a . أرمن الدراج و السيارة، ثم نـاقش بيانيا مختلف أرسم (على نفس المعلم) منحنيات المسافة بدلالة الزمن لكل من الدراج و السيارة، ثم نـاقش بيانيا مختلف الحالات (السيناريوهات) الممكنة.
 - . V = 36 km/h ، $a = 2 \text{m/s}^2$ ، d = 10 m أرمنة الالتقاء من أجل العلم عددي: أحسب أزمنة الالتقاء من أجل

التمرين الثاني:

- 1. جد المعادلات الزمنية للحركة في الإحداثيات القطبية: r(t) و r(t). و المعادلات الخمنية للحركة في الإحداثيات القطبية t و t المعادلات المعادلة على المسار واحسب الأزمنية الموافقة من t
 - أجل $t \leq T \leq 1$ ($T = 2\pi$) . ($T = 2\pi$) $0 \leq t \leq T$. أجل مركبات شعاع السرعة $V_{\rm t}(t)$ و $V_{\rm t}(t)$ في الإحداثيات القطبية بدلالة الزمن t

$$V(t) = 2R\omega.\sin\left(\frac{\omega}{2}t\right)$$
 : عطى بالعلاقة : 4

 $(1-\cos(\alpha)=2.\sin^2(\alpha/2))$. أحسب مركبات شعاع التسارع $a_t(t)$ و $a_t(t)$ في الإحداثيات القطبية بدلالة الزمن t

- . t المركبة المماسية $a_{\rm T}$ التسارع بدلالة الزمن 6.
 - $t=\pi\omega$ في اللحظة ρ أن المنتج نصف قطر الاتحناء ρ