EMD 3 de Structure Machine - 1ère Année

Durée: $\mathbf{2}$ heures
Documents interdits

Les deux parties doivent être rédigées sur des copies séparées

Partie I

Exercice 1: (5 pts)

Questions de cours architecture générale d'un ordinateur:
a) Dans un ordinateur où se trouvent les données et les instructions?
b) Quelles sont les principales étapes d'un cycle d'exécution d'une instruction?
c) Quels sont les principaux registres d'une machine à une adresse?
d) Quel est le rôle du compteur ordinal?
e) Quels sont les différents bus d'un ordinateur et à quoi servent-ils?
f) Pour accéder à une donnée, quels sont les différents modes d'adressage dans un ordinateur? Définissez trois d'entre eux.
g) Quelle est la différence entre une mémoire centrale et un registre dans un ordinateur?
h) Quelle doit être la taille du bus adresse d'un processeur 16 bits pour qu'il puisse accéder à une mémoire de 8 kilo octets? Quelle doit être la taille des principaux registres?

Exercice2: (5 pts)

Questions de cours sur les mémoires (2 pts)
a) Donnez les avantages et les inconvénients des architectures modulaires et celles entrelacées.
b) Citez les principales caractéristiques de la mémoire centrale.
c) Faire l'étude, sans faire de schéma, d'une mémoire centrale de 32 Méga * 16 bits organisée en un seul module avec un degré d'entrelacement ($\mathrm{D}=2$). Cette mémoire est réalisée à base de circuits de 8 Méga * 16 bits. (3 pts)

Partie II

Exercice 3: (4 pts)

On souhaite réaliser le complément à deux d'un nombre binaire A codé sur 4 bits :

Questions:

a) Etablir la table de vérité du circuit.
b) Réaliser le circuit en utilisant des FPLA.

Exercice4: (6 pts)

Soit l'algorithme suivant :

Algorithme Emd3;

var NB, PP, Data : entier ;
$\mathrm{PP}=0 ; \mathrm{NB}=0$;

Début

Lire(Data) ;

Répéter

Data $=$ Data + Data ;
Si retenue $=1$
alors
PP $=$ NON PP; $\{$ inverse de PP $\}$
$\mathrm{NB}=\mathrm{NB}+1$;

FinSi

Jusqu'à (Data $=0$);
Ecrire (PP); Ecrire (NB);
Fin.

Questions:

a) En prenant comme exemple Data sur 4 bits, $(\mathbf{D a t a}=1111)$ dérouler l'algorithme et donner le contenu des mots PP, NB. Dites ce qu'il fait.
b) Traduire cet algorithme en langage assembleur de la machine MIASM.
c) Dans le bloc répéter on entreprend plusieurs actions.

* A quelle opération correspond l'action Data = Data + Data Jusqu'à (Data = 0)
* Dites si cette instruction (opération) existe dans la machine MIASM, sinon la rajouter à MIASM en la définissant par sa syntaxe et son format.

Rappel : l'instruction (NON Mot) permet d'inverser tous les bits du contenu de l'accumulateur.

Bon Courage

