

الاحصـــاء

للمزيد زوروا موقع قلمى

I ترتیب متسلسلة إحصائیة:

1) – تذكير:

عند انتهاء من تصحيح فرض محروس أدرج الأستاذ الجدول الآتي :

15	12	10	8	5	النقطة على 20 (الميزة)
1	2	7	7	3	عدد التلاميذ (الحصيص)

- / الميزة هي: النقطة.
- / الحصيص هو: عدد التلاميذ الموافق لكل ميزة.
- / الحصيص الإجمالي هو: مجموع الحصيصات. في المثال أعلاه الحصيص الإجمالي هو 20 تلميذا.

2) – الحصيص المتراكم:

نعتبر الجدول أعلاه:

15	12	10	8	5	النقطة على 20 (الميزة)
1	2	7	7	3	عدد التلاميذ (الحصيص)
20	19	17	10	3	الحصيص المتراكم

3) – التردد و التردد المتراكم:

أ) -- قاعدة :

تردد ميزة هو خارج الحصيص الموافق لهذه الميزة على الحصيص الإجمالي

ب) -- مثال :

نعتبر الجدول أعلاه:

15	12	10	8	5	النقطة على 20 (الميزة)
1	2	7	7	3	عدد التلاميذ (الحصيص)
20	19	17	10	3	الحصيص المتراكم
0,05	0,1	0,35	0,35	0,15	التردد
1	0,95	0,85	0,50	0,15	التردد المتراكم

: المعدل الحسابي - (4

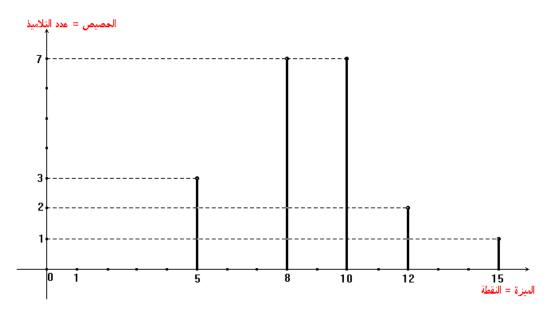
أ) -- قاعدة :

المعدل الحسابي هو خارج مجموع جداءات كل ميزة في الحصيص الموافق لها على الحصيص الإجمالي ، و يرمز له بالرمـز m .

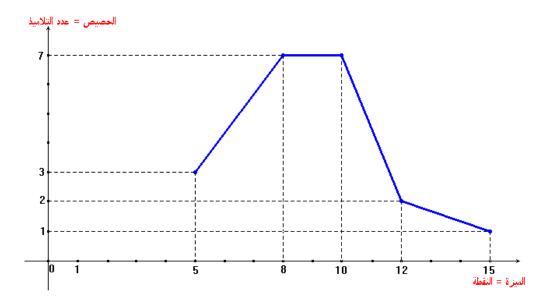
ب) -- مثال : لدينا في المثال أعلاه :

$$m = \frac{5 \times 3 + 8 \times 7 + 10 \times 7 + 12 \times 2 + 15 \times 1}{20}$$

$$m = \frac{15 + 56 + 70 + 24 + 15}{20}$$


$$m = \frac{180}{20}$$

$$m = 9$$


إذن المعدل الحسابي لهذه المتسلسلة الإحصائية هو: 9.

5) – التمثيل المبياني:

أ) -- المبيان العصوي:

ب) -- المبيان بخط منكسر:

I الصنف:

$$\frac{a+b}{2}$$
 : هو صنف لمتسلسلة فإن مركزه هو $a \leq x < b$: إذا كان

ب) -- مثال:

أجريت تجربة على 400 مصباح كهربائي لتحديد مدة الصلاحية بمئات الساعات فجاءت النتائج كالتالى:

11≤ <i>t</i> <13	9 ≤ <i>t</i> < 11	7 ≤ <i>t</i> < 9	$5 \le t < 7$	$3 \le t < 5$	الصنف: المدة t
64	78	54	46	15	الحصيص: عدد المصابيح
12	10	8	6	4	المركز

2) - المعدل الحسابي (للصنف):

أ) -- قاعدة :

المعدل الحسابي هو خارج مجموع جداءات كل مركز في الحصيص الموافق له على الحصيص الإجمالي، ويرمز له بالرمز أس. "

لدينا في المثال أعلاه:

$$m = \frac{4 \times 15 + 6 \times 46 + 8 \times 54 + 10 \times 78 + 12 \times 64}{400}$$

$$m = \frac{2316}{400}$$

$$m = 5,79$$

- * / ملاحظات هامة :
- 1) نسمى المعدل الحسابي كذلك القيمة الوسطية.
- 2) لإيجاد التردد المتراكم الموافق لكل ميزة نقسم حصيصها المتراكم على الحصيص الإجمالي .