
الأستاذ: إبديون.ع

مبدأ المفاعل النووي:

المفاعل النووي هو تركيب يسمح بتحقيق تفاعل الإنشطار النووي و التحكم فيه ، تستعمل فيه قضبان من مادة البور أو الكاديوم حيث تمتص الفائض من النترونات لتجنب أي انفجار فيتم التحكم في التدفق النتروني الذي يسمح بتعطيل أو تعجيل التفاعل التسلسلي . الوقود المستعمل غالبا هو ديوكسيد اليورانيوم UO_2 المخصب إلى 00 من اليورانيوم 0 المفاعل النووي

ثانوية: الشيخ نصر الدين ناصر ذراع قبيلة-سطيف

** في المفاعل البخاري تحت الضغط (PWR) كما في الشكل، بحيث يستعمل الماء كسائل حامل للحرارة (fluide caloporteur)

حيث يضبط درجة الحرارة و يحد من سرعة النترونات ، و هو يجري في دارتين :

- دارة أولية يكون فيها الماء سائلا في درجة حرارة تقارب C 345 0 و تحت ضغط كبير حوالي Bars يحول إلى بخار .
 - ماء الدارة الثانية عند درجة حرارة $271^{\circ}C$ و تحت ضغط 66 3 ، يؤدي ذلك إلى تدوير عنفة المنوب (التوربين).

● مردود و استطاعة مفاعل نووي :

¦ إستطاعة مفاعل نووي:

• $P = \frac{E_{electrique}}{\Delta t}$ • Φ • Relating in the point of the point Φ • Period • P

الستطاعة النووي التي يستقبلها $P=rac{E_{libT}}{\Delta t}$ هي الاستطاعة النووي التي يستقبلها المفاعل النووي و الناتجة عن التفاعل النووي للعينة P الاستطاعة بالواط P الاستطاعة بالواط P الطاقة الكلية المحررة بـ E_{libT}

مردود مفاعل نووي:

$$r = \frac{E_{electrique}}{E_{libT}} \times 100 \Longrightarrow r = \frac{E_{electrique}}{N.E_{lib}} \times 100$$

r مردود مفاعل نووي بـ (%) مردود مفاعل نووي بـ E_{ele} الطاقة الكهربائية بـ E_{lib} الطاقة المحررة بـ (J) او (MeV)

(MeV) الطاقة الكلية المحررة بـ (J) او E عدد الانوية N

بعض منافع ومخاطر النشاط الإشعاعي

ווע!

المخاطر:

- الإشعاعات النووية تتسبب في إحداث تشوهات خلقية (طفرة وراثية)
 - التلوث النووي(نفايات نوويت₎
 - ـ أسلحة الدمار الشامل

ـ إنتاج الطاقة الكهربائية

المنافع:

- استعمالها كوقود (بعض الغواصات والسفن)
 - يستعمل في التأريخ البحث العلمي-الصناعة _الزراعة
 - يستعمل في الطب(تشخيص الأمراض) معالجة سرطان الغدة الدرقية