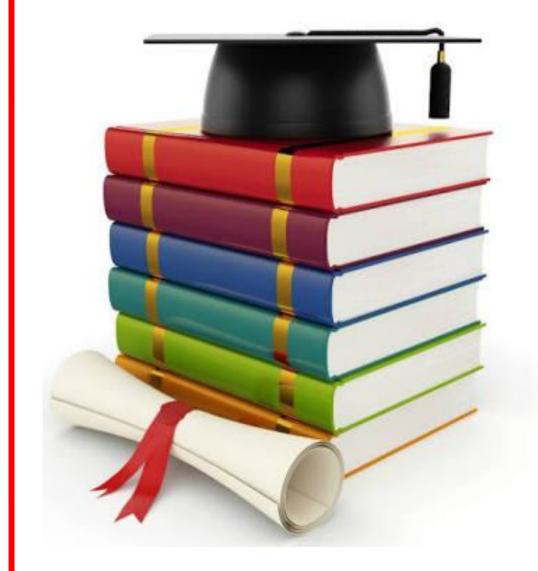
ملخص الوحدة 1 المتابعة الزمنية لتحول كيميائي في وسط مائي

من إعداد الأستاذ: حجاري علاء الدين



صفحة الأستاذ

حجاري علاء الدين للعلوم الفيزيائية

0663420739

ملخص الوحدة 1 المتابعة الزمنية لتحول كميائي في وسط مائي

مكتسبات قبلية:

المؤكسد:

هو كل فرد كيميائي قادر على اكتساب الكترون أو أكثر خلال تحول كيميائي . فنقول أنه حدث له إرجاع حسب المعادلة النصفية التالية

 Mno_4 + 8 H + + 5 e = Mn^{2+} + 4 H₂O

المرجع:

هو كل فرد كيميائي قادر على فقد الكترون أو أكثر خلال تحول كيميائي . فنقول أنه حدث له أكسدة حسب المعادلة النصفية التالية

$$Red = Ox + n e^{-}$$
 من للأكسدة

أ<u>مثلة :</u>

$$Na = Na^+ + e^-$$

 $Zn = Zn^{2+} + 2e^-$

تفاعل الأكسدة الإرجاعية:

هو تفاعل كيميائي يتم خلاله انتقال الإكترونات بين المتفاعلات . مثال : تفاعل يود البوتاسيوم (K+1+1) مع بيروكسيدوسولفات البوتاسيوم (K+1+1)

(I2/I⁻): $2 I^{-} = I_2 + 2 e^{-}$ من للأكسدة $S_2O_8^{2-} / SO_4^{2-}$): $S_2O_8^{2-} + 2e^{-} = 2SO_4^{2-}$ من للإرجاع $S_2O_8^{2-} + 2e^{-} = 2SO_4^{2-}$ من الإجمالية $S_2O_8^{2-} = I_2 + 2SO_4^{2-}$ موازنة تفاعل الأكسدة و الإرجاع :

لموازنة تفاعل الأكسدة و الإرجاع نتبع الخطوات التالية: 1 الموازنة العنصر الكيميائي بين طرفي المعادلة ماعدا عنصر O و الم

- نحويل الأوكسوجين(O) الموجود في شطر إلى جزيئة ماء (H_2O) في الشطر الثاني من المعادلة .
 - (H) في الأوساط الحامضية نحقق إنحفاظ عنصر الهيدروجين (H) بالبروتونات ((+1)) أو (+3O).
 - 4 موازنة الشحن بإضافة الإلكترونات
 - صرب من للأكسدة في عدد الكترونات من للإرجاع و العكس صحيح ثم جمع المعادلتين طرفا لطرف .

أمثلة توضيحية:

مثال 1 : تفاعل اليود (I2) مع معدن الزنك (Zn)

 $(Zn^{2+}/Zn): Zn = Zn^{2+} + 2e^{-}$ م ن للأكسدة $(I_2/I^{-}): I_2 + 2e^{-} = 2I^{-}$ م ن للإرجاع $Zn + I_2 = Zn^{2+} + 2I^{-}$

مثال 2: تفاعل معدن المغنزيوم (Mg) مع محلول كلور الهيدروجين

(Cl⁻ + H⁺) (Mg ²⁺/Mg) : Mg = Mg²⁺ + 2e⁻

 $\frac{(H^+/H_2) : 2 H^+ + 2 e^- = H_2}{Mg + 2 H^+ = Mg^{2+} + H_2}$

مثال 3 : تفاعل معدن النحاس(Cu) مع محلول نترات الفضة

 $(Ag^++No_3^-)$

 (Cu^{2+}/Cu) : $Cu = Cu^{2+} + 2e^{-}$ (Ag^{+}/Ag) : $2Ag^{+} + 2e^{-} = 2Ag$

 $\frac{2 \text{ Ag} + 2 \text{ e} - 2 \text{ Ag}}{\text{Cu} + 2 \text{ Ag}^{+} = \text{Cu}^{2+} + 2 \text{Ag}}$

مثال 4: تفاعل الماء الأوكسوجيني (H2O2) و اليود (I2)

في وسط حمضي (+H)

 (I_2/I^-) : $2I^- = I_2 + 2e^ (H_2O_2/H_2O)$: $H_2O_2 + 2H^+ + 2e^- = 2H_2O$

 $2 I^{-} + H_2O_2 = I_2 + 2 H_2O$

مثال 5 : التفكك الذاتي للماء الأوكسوجيني (H2O2)

 (O_2/H_2O_2) : $H_2O_2 = O_2 + 2 H^+ + 2 e^ (H_2O_2/H_2O)$: $H_2O_2 + 2 H^+ + 2 e^- = 2 H_2O$

 $2H_2O_2 = O_2 + 2 H_2O$

ملاحظة :

يمكن أن تلعب نفس الجزيئة دور المؤكسد و المرجع كما في المثال السابق وتسمى الظاهرة عندئذ التفكك الذاتي مثل التفكك الذاتي الثاريدة الأدم كريريتات ($(-2^2 - 2^2 -$

ا ($S_2O_3^2$ /S) و (SO_2 /S O_3^2) في الشيوكبريتات (SO_3^2 /S O_3) في الشيوكبريتات (SO_3)

تفاعل بر منغنات البوتاسيوم $(K^+ + MnO_4^-)$ مع محلول كبريتات الحديد الثنائي (Fe^{2+}) المحمض (H^+)

(Fe³⁺/Fe²⁺): Fe²⁺ = Fe³⁺ + e⁻....x5

الأجسام الصلبة (MnO4-/Mn²⁺): MnO4- + 8 H+ + 5 e- = Mn²⁺ + 4H₂O

 $5 \text{ Fe}^{2+} + \text{MnO4}^- + 8 \text{ H}^+ = 5 \text{ Fe}^{3+} \text{Mn}^{2+} + 4 \text{ H}_2 \text{O}$ $1 \text{ A}^- = 6 \text{ A}^- + 6 \text{ A}^- + 6 \text{ A}^- + 6 \text{ A}^- + 6 \text{ A}^ 1 \text{ A}^- = 6 \text{ A}^- + 6 \text{ A}^ 1 \text{ A}^- = 6 \text{ A}^-$

 $^{^{1}}$ (2 $\mathrm{K^{+} + Cr_{2}O_{7}^{2}}$) أنتائي كرومات البوتاسيوم

في الغازات (CO₂/H₂C₂O₄) : H₂C₂O₄ = 2 CO₂ + 2 H⁺ + 2 e⁻ ...x3 (Cr₂O₇²-/Cr³⁺) : Cr₂O₇²-+14H⁺+6 e⁻= 2Cr³⁺+7H₂O 3H₂C₂O₄ + Cr₂O₇²- +8H⁺= 6 CO₂ + 2 Cr³⁺+7H₂O

لحظة:

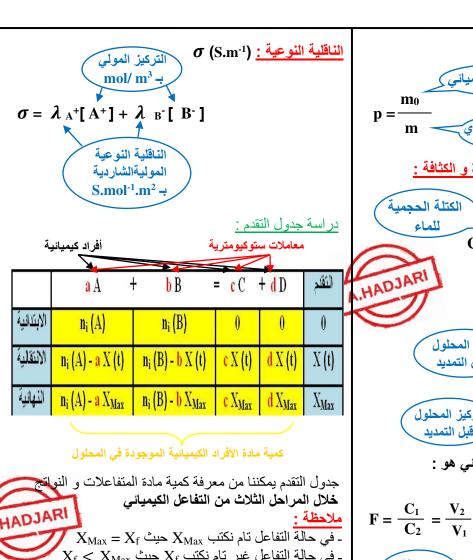
في تمارين البكالوريا إما تقدم الثنائيات الداخلة في التفاعل و يطلب إيجاد المعادلتين النصفيتين و المعادلة الإجمالية أو تعطى المعادلة و يطلب إيجاد المعادلتين النصفيتين و الثنائيات المشاركة في التفاعل أهم العلاقات الكيميائية المقررة في هذه الوحدة:

كمية المادة : n(mol) الكتلة بـ g

 $n = \frac{m}{M}$ حالة جسم صلب جالة المولية المولية g/mol

 $n = \frac{V_g}{V_M}$ حالة غاز L/mol

التركيز المولى : C(mol/L) كمية المادة بـ mol


n

HADJARI

ρ (Kg/m³ <u>ou</u> g/ml) <u>: الكتلة الحجمية</u>

 $d = \frac{\rho_{\text{eau}}}{\rho_{\text{eau}}}$ الكتلة الحجمية للماء و تساوي $1\text{g/ml ou } 10^3\text{Kg/m}^3$

 $\mathbf{d} = \frac{\mathbf{M}_{\mathrm{gaz}}}{29}$ في الغازات الكتلة المولية بـ الكتلة المولية الهواء

 $X_{
m f} < X_{
m Max}$ حيث حالة التفاعل غير تام نكتب $X_{
m f}$

هو قيمة التقدم الموافق لاستهلاك كمية مادة المتفاعل المحد

هو قيمة التقدم عندما تتوقف الجملة الكيميائية عن التطور .

هو المتفاعل الذي تنتهي كمية مادته أولا (قبل كل المتفاعلات) الشروط الستوكيومترية:

 $n_i(A)$ $n_i(B)$ العلاقة التالية

التقدم الأعظمي XMax:

درجة النقاوة : (درجة مؤوية %p(

الكتلة المولية

معامل التمديد: (عدد دون وحدة) F

التركيز المولى

بعد التمديد

حجم المحلول

بعد التمديد

قانون الغازات المثالية

T درجة الحرارة المطلقة T

 $T(K) = t(C^0) + 273$

بالكالفن (K) حيث:

لناقلية : G(S)

النقاوة

قانون التمديد:

كتلة النوع الكيميائي

نلة المحلول التجاري

الكثافة

peau.d.p

علاقة التركيز المولى بدرجة الكثافة و النقاوة و الكثافة:

 $C_1 V_1 = C_2 V_2$

حجم الماء المقطر المضاف للمحلول الابتدائي هو:

 $V_{eau} = V_2 - V_1$

نابت الغاز

لناقلية النوعية

S.m⁻¹ -

ثابت الخلية بـ m

P.V = n.R.T

كمية المادة

 $G = K \cdot \sigma$

mol -

 m_0

للماء

حجم المحلول

قبل التمديد

تركيز المحلول

قبل التمديد

حجم الغاز

ضغط الغاز

pa

 $m^3 \rightarrow$

نقول عن محلول ما أنه في الشروط الستوكيومترية إذا تحققت

في هذه الحالة لا يوجد متفاعل محد

ماصة عبارية ، حوجلة عيارية المواد المستعملة: محلول ابتدائي مركز ، ماء مقطر طريقة العمل: نسحب حجم ٧ بواسطة السحاحة من المحلول HADJARI مالك ملي و نسكبه في الحوجلة ثم نكمل الحجم الى خط العيار إجاصة الماء المقطر عيارية حوجلة عبار بة مقطر محلول إبتدائي

المتابعة الزمنية لتحول كيميائي:

المحلول الكيميائي .

طريقة كيميائية

المعايرة اللونية

تعتمد على:

لأدوات المستعملة:

تهدف المتابعة الزمنية لتحديد تركيب المحلول الكيميائي في لحظة t

أو أحد النواتج و الذي يمكننا من تحديد تقدم التفاعل (x(t في تلك اللحظة ومنه يمكن معرفة كمية مادة الأفراد الكيميائية المتواجدة

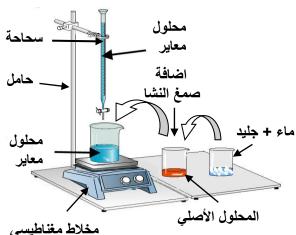
و يتم ذلك أساسا عن طريق مراقبة كمية مادة أحد المتفاعلات

تتم المتابعة الزمنية باستعمال احدى الطريقتين

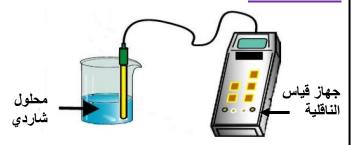
البروتوكولات التجريبية الخاصة بالمتابعة الزمنية:

طريقة فيزيائية

الضغط، الحجم

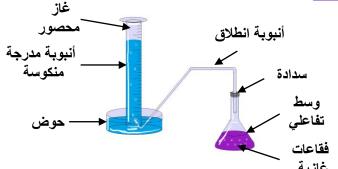

.....PH

تعتمد على قياس:


الناقلية الكهربائية

الأدوات المستعملة: حامل ، سحاحة ، مخلاط مغناطيسي المواد المستعملة: المحلول الأصلى (المعاير) ، المحلول المعاير ماء و جليد . صمغ النشا أو التيودان .

- . نظيف الماء و الجليد للمحلول المعاير و نضعه فوق المخلاط
- نضيف بضع قطرات من صمغ النشا (تسهيل تحديد نقطة التكافؤ)
 - · نضيف المحلول المعاير بالتدريج (قطرة قطرة) .
 - تغير لون المحلول المعاير يشير إلى حدوث التكافؤ ، و حجم المحلول المسكوب من السحاحة يسمى حجم التكافؤ $m V_E$.


3/ قياس الناقلية:

يمكننا بواسطة جهاز قياس الناقلية معرفة σ خلال الزمن حيث لدينا

وبالتالي يمكن معرفة تركيز $\sigma = \lambda_{A^+}[A^+] + \lambda_{B^-}[B^-]$ الشوار د في هذا المحلول عندئذ يمكننا تحديد التقدم x(t) في تلك اللحظة ومنه معرفة كمية مادة الافراد الكيميائية المتواجدة في المحلول و ذلك من خلال جدول التقدم

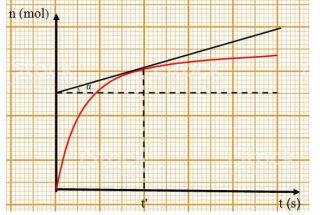
4/ قياس الحجم:

غازية

يمكننا هذا البروتوكول من معرفة كمية الغاز المنطلق خلال لحظة t يمكن تحديد كمية الغاز المنطلق $\mathbf{n} = \frac{\mathbf{V_g}}{\mathbf{v_g}}$ و باستخدام العلاقة يمكن معرفة التقدم Xt و من خلال جدول التقدم يمكن تحديد كمية مادة المتفاعلات و النواتج.

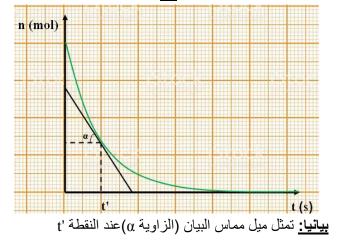
5/ قياس الضغط:

في هذه الحالة نستخدم قانون الغازات المثالية ونتبع نفس ما تم ذكره في البروتوكولات السابقة لمعرفة كمية مادة المتفاعلات و النواتج خلال لحظة ما .


سرعة التفاعلات الكيميائية:

تصنف التحو لات الكيميائية إلى ثلاثة أصناف تحولات سريعة (لحظية) تنتهي بمجرد تلامس المتفاعلات فيما بينها تحولات بطيئة تدوم عدة ثواني إلى عدة ساعات تحولات بطيئة جدا و تدوم عدة أيام إلى عدة شهور

 $V = \frac{dn}{dt}$


سرعة التفاعلات الكيميائية: 1/ سرعة تشكل نوع كيميائي:

نظريا: تمثل السرعة مشتق الدالة (n=f(t بدلالة الزمن وحدتها mol/s ou mol/min

t' بيانيا: تمثل ميل مماس البيان (الزاوية lpha)عند النقطة $V = \frac{-dn}{}$ سرعة اختفاء نوع كيميائي:

نظريا: تمثل سالب السرعة مشتق الدالة (n=f(t mol/s ou mol/min بدلالة الزمن وحدتها

$$V = \frac{1}{V} \times \frac{dx}{dt}$$

السرعة الحجمية للتفاعل:

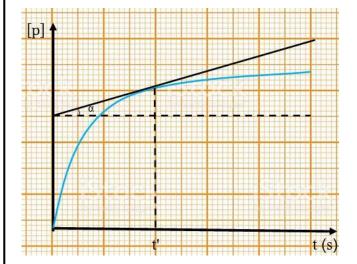
زمن نصف التفاعل $t_{1/2}$

هي تغير تقدم التفاعل بدلالة الزمن

في وحدة الحجوم.

. هو المدة الزمنية اللازمة لبلوغ التفاعل

نصف كمية مادة المتفاعل المحد

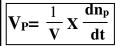

السرعة الحجمية لتشكل نوع كيميائي:

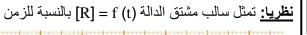
نظريا: تمثل السرعة الحجمية مشتق الدالة $mol.L^{-1}.s^{-1}$ مقسومة على حجم الوسط التفاعلي وحدتها $n_p=f(t)$

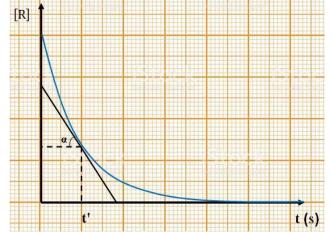
t' عند النقطة $n_p=f(t)$ عند النقطة عند النقطة مقسومة على حجم الوسط التفاعلي

ملاحظة: اذا كان حجم الوسط التفاعلي ثابت $V_{P} = \frac{d[p]}{dt}$ ادا كان حجم الوسط التفاعلي تابت و هذا المعمول به في تمارين البكالوريا عندئذ يكون

[p] = f(t) بالنسبة للزمن الخريا: تمثل السرعة الحجمية مشتق الدالة

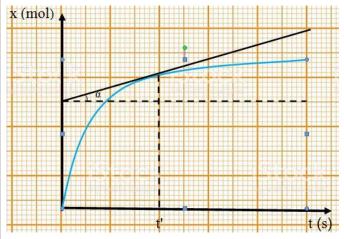



رالزاوية (α) عند النقطة [p] = f(t) الزاوية (α) عند النقطة


السرعة الحجمية الختفاء نوع كيميائى:

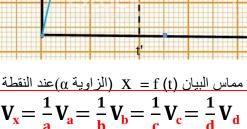
$$V_{R} = \frac{-1}{V} \times \frac{d_{n}}{dt}$$

$$=\frac{-\mathbf{d}[p]}{\mathbf{d}t}$$



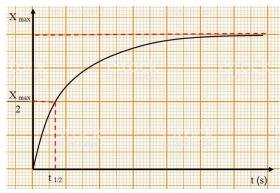
 $(\alpha$ الزاوية [R] =f(t) تمثل سالب ميل مماس البيان عند النقطة 't

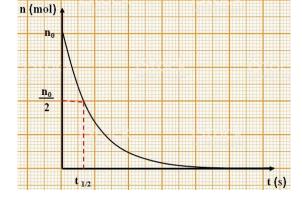

$$V_{x} = \frac{dx}{dt}$$


سرعة التفاعل: تمثل تقدم التفاعل بدلالة الزمن.

نظریا: تمثل مشتق الدالة X = f(t) بالنسبة للزمن

بيانيا: تمثل ميل مماس البيان X = f(t) الزاوية α عند النقطة لعند النقطة والنقطة النقطة النقطة والنقطة النقطة النقطة





كل السرعات السابقة تتناقص مع مرور الزمن تفسر مجهريا بتناقص

 ${f X}_{(t1/2)} = rac{{f X}_f}{2}$ نصف تقدمه النهائي أي : يا كان النفاعل تام $({f X}_f = {f X}_{Max})$ فهو يمثل المدة اللازمة لاستهلاك - إذا كان النفاعل تام

تراكيز المتفاعلات وبالتالي تناقص عدد التصادمات الفعالة.

العوامل الحركية:

لعوامل الحركية: هي العوامل المؤثرة على سرعة التفاعل (إبطائه أو تسريعه A.HAD ملي A.HAD من المؤثرة على سرعة التفاعل

درجة الحرارة

التراكين الابتدائية للمتفاعلات

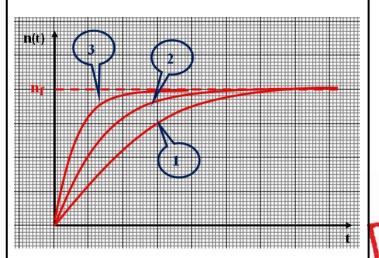
حيث يكون تغير جملة كيميائية أسرع كلما كان: درجة الحرارة أكبر

تركيز أكبر للمتفاعلات

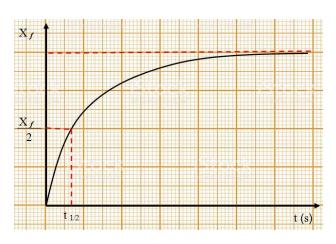
وسيط مناسب

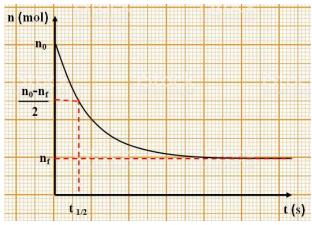
هي عملية تأثير الوسيط على التفاعل الكيميائي و هي أنواع:

إذا كانت المتغاعلات و الوسيط من طور واحد

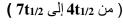

2/ وساطة غير متجانسة:

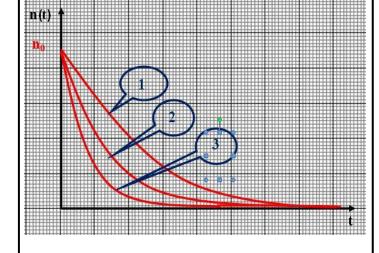
إذا كانت المتغاعلات و الوسيط من طورين مختلفين

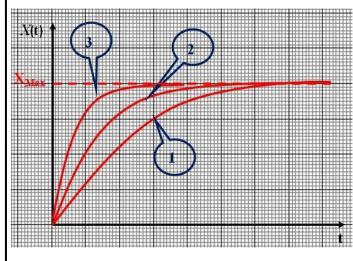

<u>7</u> وساطة إنزيمية : إذا تم تحفيز التفاعل بواسطة أنزيم


هو نوع كيميائي يسرع التفاعل دون أن يظهر في معادلة التفاعل و لا يغير الحالة النهائية للجملة الكيميائية

من خلال التأثير على سرعة التفاعل و ذلك عن طريق زيادة درجة الحرارة أو زيادة تراكيز الابتدائية للمتفاعلات نتحصل على ما يلي:




حالة التحولات غير تامة



- مقارية تفاعلين من حيث السرعة (كلما كان 1/2 أصغر كان التفاعل أسرع)
 - التحكم في التفاعل الكيميائي ⁻
- التنبأ بالمدة الزمنية التقريبية لانتهاء التفاعل A.HADJARI

