التحضيرالجيم لكالوريل 2021

كل ما يحتاجه تلميذ البكالوريا في الدوال المعدية

 $a \neq 0$ ترگیر: إشارة ثنائی الحد (ax + b) حیث (1

$$x=rac{-b}{a}:$$
ي: $ax=-b$ أي $ax+b=0$

x	$-\infty$	$\frac{-b}{a}$		$+\infty$
الإشارة	مخالف لإشارة a		موافق لإشارة a	

2) ملول معاولة من (الررجة (الثانية و تحليلها إلى جداء عاملين

$$\Delta = b^2 - 4ac$$
 ميث ($a \neq 0$) ميث $ax^2 + bx + c = 0$

$\Delta > 0$	$\Delta = 0$	$\Delta < 0$	إذا كان
حلين هما:	حل مضاعف	لا تقبل حل	حلول المعادلة
$x_{_{\! 1}}=\frac{-b-\sqrt{\!\Delta}}{2a}$	$x_0 = \frac{-b}{2a}$		$ax^2 + bx + c = 0$ $\mathbb{R} \stackrel{2}{=}$
$x_{_{2}}=\frac{-b+\sqrt{\Delta}}{2a}$			
$a(x-x_1)(x-x_2)$	$a(x-x_0)^2$	لا تقبل تحليل	تحليل
1/\ 2/	(0/		$ax^2 + bx + c$

 $(a \neq 0)$ یث اورة $ax^2 + bx + c$ یث

	فإن الإشارة كمايلي	إذا كان
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$\Delta < 0$
x	$-\infty$ x_0 $+\infty$	$\Delta = 0$
الإشارة	موافق لإشارة a موافق لإشارة	
	$x_1 < x_2$	$\Delta > 0$
x	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
إشارة	$egin{array}{c ccc} a & a & a & a & a & a & a & a & a & a $	

3) (لنهايات

نهاية مجموع دالين

$\lim_{x \to a} f(x)$	$l\in\mathbb{R}$	$l \in \mathbb{R}$	$l \in \mathbb{R}$	$+\infty$	$+\infty$	$-\infty$
$\lim_{x \to a} g(x)$	$l' \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} \left[f(x) + g(x) \right]$	l+l'	$+\infty$	$-\infty$	$+\infty$	ح.ع.ت	$-\infty$

نهاية جداء دالين

										<u> </u>
$\lim_{x \to a} f(x)$	$l\in\mathbb{R}$	l > 0	l > 0	l < 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0	0
$\lim_{x \to a} g(x)$	$l' \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$-\infty$
$\lim_{x \to a} [f(x) \times g(x)]$	$l \times l'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	ح.ع.ت	ج.ع. ت

نهاية حاصل قسمة دالين

$\lim_{x \to a} f(x)$	$l\in\mathbb{R}$	l	l	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} g(x)$	$l' \in \mathbb{R}^*$	$+\infty$	$-\infty$	l' > 0	l' < 0	l' > 0	l' < 0	$+\infty$	$-\infty$	$+\infty$	$-\infty$
$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]$	$\frac{l}{l'}$	0	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	جع. ت	ح.ع. ت	جع. ت	ح.ع. ت

تسمى الحالات التي لا تسمح فيها النظريات السابقة من استنتاج النهاية بحالات "عدم التعيين "

$$0\! imes\!\infty$$
 ، $rac{0}{0}$ ، $rac{\infty}{\infty}$ ، $-\infty+\infty$ و تتمثل يخ $=$:

ملاحظة:

- ، نهاية كثير الحدود لما x يؤول إلى $\infty +$ أو $\infty -$ تساوي نهاية الحد ذو الأعلى درجة (1
- نهاية كسر ناطق لما x يؤول إلى $+\infty$ أو $+\infty$ تساوي نهاية نسبة أعلى درجة في البسط على أعلى درجة في المقام .

4) (المستقيمات (المقاربة

التفسير الهندسي	النهاية
المنحنى $$	$ \lim_{x \to a} f(x) = \infty $
x=a معادلته	
المنحنى $$	$\lim_{x \to \infty} f(x) = b$
y=b معادلته	

 $x \to \infty$ المنحنى C_f يقبل مستقيم مقارب مائل y = ax + b معادلته y = ax + b

ملاحظة: إذا كانت الدّالة f تكتب من الشكل : f(x)=ax+b+g(x) و كانت f تكتب من الشكل : f(x)=ax+b+g(x) فإن . ∞ بجوار f(x)=ax+b مستقيم ذو المعادلة f(x)=ax+b+g(x) مستقيم مقارب مائل للمنحنى f(x)=ax+b+g(x) بجوار f(x)=ax+b+g(x) . f(x)=ax+b+g(x) بجوار f(x)=ax+b+g(x) . f(x)=ax+b+g(x) مستقيم مقارب مائل للمنحنى f(x)=ax+b+g(x) .

الدالة المشتقة	مجالات قابلية الإشتقاق	الدالۃ
$x \to 0$	$\mathbb R$	$x \to a / a \in \mathbb{R}$
$x \rightarrow a$	\mathbb{R}	$x \to ax + b$
$x \rightarrow n.x^{n-1}$	\mathbb{R}	$x \to x^n / n \in \mathbb{N}$
$x o -rac{1}{x^2}$	\mathbb{R}^*	$x \to \frac{1}{x}$
$x \to -\frac{n}{x^{n+1}}$	\mathbb{R}^*	$x \to \frac{1}{x^n} / (n \in \mathbb{N})$
$x \to \frac{1}{2\sqrt{x}}$	$\mathbb{R}^{+} = \left]0; +\infty\right[$	$x \to \sqrt{x}$
$x \to \cos x$	\mathbb{R}	$x \to \sin x$
$x \to -\sin x$	$\mathbb R$	$x \to \cos x$
U' + V'		U+V
$\lambda . U'$		$\lambda U / (\lambda \in \mathbb{R})$
U'V + UV'		U.V
$-\frac{U'}{U^2}$ $\frac{U'V - UV'}{V^2}$		$\frac{1}{U}$
$\frac{U'V - UV'}{V^2}$		$\frac{U}{V}$
$x \to au'(ax+b)$		$x \rightarrow u(ax+b)$ $a \neq 0$ حیث

$$(u^n)' = nu'u^{n-1}$$
 , $\sqrt{u}' = \frac{u'}{2\sqrt{u}}$, $(u \circ v)'(x) = v'[u(x)] \times u'(x)$

6) اللوضع النسبي بين المنحنى و المستقيم المقارب المائل

f(x)-(ax+b) لدراسة وضعية المنحنى C_f بالنسبة للمستقيم المقارب المائل (Δ) ندرس إشارة الفرق و نميز الحالات التالية :

الوضع النسبي	إشارة الفرق
(Δ) تحت C_{f}	f(x) - (ax + b) < 0
(Δ) فوق C_{f}	f(x) - (ax + b) > 0
(Δ) يقطع C_f	f(x) - (ax + b) = 0

- f(x)=0 تقاطع المنحنى $C_{_f}$ مع محور الفواصل : نحل المعادلة (7
 - f(0) تقاطع المنحنى مع محور التراتيب يعني حساب (8

9) مركز (التناظر

يعني: C_f مركز تناظر للمنحنى $w(\alpha;\beta)$

$$(2\alpha-x)\in D_{\scriptscriptstyle f}$$
 و $x\in D_{\scriptscriptstyle f}$ بشرط $f(2\alpha-x)+f(x)=2\beta$

$$(lpha+x)\in D_{_f}$$
 و $(lpha-x)\in D_{_f}$ ، $x\in D_{_f}$ بشرط $f(lpha-x)+f(lpha+x)=2eta$ أو بالمقانون

$$f(-6-x)+f(x)=4$$
 : المسألة العكسية : يطلب منا مثلا إثبات أن

لتفسيرها هندسيا نقوم بالمطابقة:
$$\begin{cases} 2lpha=-3 \\ eta=2 \end{cases}$$
 أي $\begin{cases} 2lpha=-6 \\ 2eta=4 \end{cases}$ مركز

. C_f تناظر للمنحنى

بحور تناظر: المستقيم x=lpha:(D):x=lpha يعني:

$$(2\alpha-x)\in D_{\scriptscriptstyle f}$$
 و $x\in D_{\scriptscriptstyle f}$ بشرط $f(2\alpha-x)=f(x)$

$$(\alpha+x)\in D_{_f}$$
 و بالقانون : $f(\alpha-x)=f(\alpha+x)$ و بشرط $f(\alpha-x)=f(\alpha+x)$

f(-8-x)=f(x):المسألة العكسية يطلب منا مثلا إثبات أن

lpha=-4 و منه 2lpha=-8 و منه اتفسيرها هندسيا نقوم بالمطابقة:

 $C_{\scriptscriptstyle f}$ محور تناظر للمنحنى x=-4 محور منه نقول أن المستقيم ذو المعادلة

11) الرّالة الزوجية و الرّالة الفروية

 $(-x)\in D_{_f}$ مجال مجموعة التعريف متناظر بالنسبة للصفر أي $x\in D_{_f}$ فإن

الدّالة الزوجية تحقق f(-x)=f(x) و تمثيلها البياني متناظر بالنسبة لمحور التراتيب.

الدّالة الفردية تحقق f(-x)=-f(x) و تمثيلها البياني متناظر بالنسبة للمبدأ.

12) نقطة (الإنعطاف

نقول أن C_f يقبل النقطة $A(x_0;f(x_0))$ كنقطة إنعطاف إذا تحقق أحد الشروط التالية:

- أ) المشتق الثاني f''(x) ينعدم عند x_0 و يغير إشارته عندها .
- ب) المشتق الأول f'(x) ينعدم عند x_0 و لا يغير إشارته عندها .
 - . C_f يخترق المناس عند النقطة $A(x_0;f(x_0))$ يخترق المناس عند النقطة

13) مبرهنة (لقيم (المتوسطة (الحالة الخاصة)

igl[a;bigr] إذا كانت f دالت مستمرة و رتيبت تماما على المجال

 $lpha\in\left]a;b\right[$ عيث f(a) عيث f(a) عيث f(a) عيث و كان f(a) عيث f(a) عيث f(a) عيث و كان f(a) عيث و كان مبرهنة القيم المتوسطة (الحالة العامة)

 $\left[a;b
ight]$ دالت مستمرة و رتيبت تماما على المجال

و كان k محصور بين f(a)=k فإن المعادلة f(a)=k تقبل حلا وحيد a يحقق a حيث: $\alpha\in a$ و كان $\alpha\in a$

14) (لعرو المشتق و تفسيره الهنرسي

		عن ر عسايره رمهارسي	
التفسير الهندسي	قابلية الاشتقاق	النهاية	
يقبل مماسا عند C_f النقطة $A(x_0;f(x_0))$ معامل توجيهه l	قابلۃ f قابلۃ \mathbf{t} للإشتقاق عند \mathbf{x}_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l \neq 0$	1
يقبل مماسا عند C_f النقطة $A(x_0;f(x_0))$ موازيا لحامل محور الفواصل (أفقي)	قابلۃ f للإشتقاق عند $x_{\scriptscriptstyle 0}$	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$	2
يقبل مماسا عند C_f يقبل مماسا عند النقطة $A(x_0;f(x_0))$ موازيا لحامل محور التراتيب $($ عمودي $x=x_0$ معادلته $x=x_0$	غير قابلۃ f غير قابلۃ x_{0}	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty$	3
يقبل نصفي C_f يقبل نصفي مماسين عند النقطت $A(x_0;f(x_0))$ و تسمى النقطة $A(x_0;f(x_0))$ نقطة زاوية .	قابلۃ f قابلۃ للإشتقاق علی یمین و علی یسار x_0 . لکن غیر قابلۃ للإشتقاق x_0 عند x_0	$\lim_{x \stackrel{<}{\longrightarrow} x_0} rac{f(x) - f(x_0)}{x - x_0} = l_1$ $\lim_{x \stackrel{>}{\longrightarrow} x_0} rac{f(x) - f(x_0)}{x - x_0} = l_2$ $l_1 eq l_2 eq g$	4
يقبل مماسا عند C_f يقبل مماسا عند النقطة $A(x_0;f(x_0))$ موازيا لحامل محور التراتيب (عمودي) معادلته $x=x_0$ و تسمى النقطة $A(x_0;f(x_0))$ نقطة إنعطاف للمنحنى C_f	غير قابلۃ f غير قابلۃ f للإشتقاق على يمين و على يسار x_0 و غير قابلۃ للإشتقاق x_0 عند x_0	$\lim_{x \stackrel{<}{\longrightarrow} x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty$ $\lim_{x \stackrel{>}{\longrightarrow} x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty$ بحيث النهايتين معا $+\infty$ أو $-\infty$	5

يقبل نصفي C_f يقبل نصفي مماسين عند النقطۃ $A(x_0;f(x_0))$ موازيين لحامل محور التراتيب (عموديان) معادلتيهما $x=x_0$	غير قابلۃ f غير قابلۃ للإشتقاق على يمين و على يسار x_0 و غير قابلۃ للإشتقاق عند	$\lim_{x \stackrel{<}{\longrightarrow} x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty$ $\lim_{x \stackrel{>}{\longrightarrow} x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty$ $\lim_{x \stackrel{>}{\longrightarrow} x_0} (x - x_0) = \infty$ $\lim_{x \stackrel{>}{\longrightarrow} x_0} (x - x_0)$	6
و تسمى النقطة $x=x_0$ و تسمى النقطة $A(x_0;f(x_0))$ رجوع للمنحنى C_f			

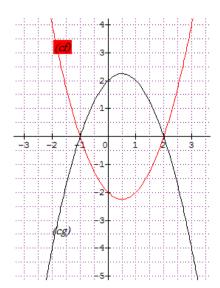
 $\lim_{h\to 0} rac{f(x_0+h)-f(x_0)}{h}$: ملاحظة: صيغة أخرى لقانون قابلية الإشتقاق h (السؤال و طريقة (الإجابة عليه) (15)

كيفية البحث عن الفاصلة x بكتابة معادلة المماس	السؤال	
$y = f'(x_{_{\! 0}})(x-x_{_{\! 0}}) + f(x_{_{\! 0}})$ نكتب القانون	أكتب معادلة المماس	1
نعوض x بقيمتها المعطاة	للمنحنى $$ عند	
	$x_{\scriptscriptstyle 0}$ النقطة ذات الفاصلة	
نحل المعادلة $x_{\scriptscriptstyle 0}=y_{\scriptscriptstyle 0}$ و عند تعيين نطبق	أكتب معادلة المماس	2
القانون كما في (1)	للمنحنى $$ عند	
	$y_{_{0}}$ النقطة ذات الترتيبة	
نحل المعادلة: $f'(x_0)=a$ نطبق	بيّن أنه يوجد مماس	3
القانون كما في (1)	للمنحنى $$ ميله أو	
	(معامل توجيهه) يساوي	
	a	
نحل المعادلة $a_0 = f'(x_0) = a$ نطبق	بيّن أنه يوجد مماس	4
القانون كما في (1)	للمنحنى $$ يوازي	
	المستقيم ذو المعادلة	
	y = ax + b	
f(x) = -1	بيّن أنه يوجد مماس	5
نحل المعادلة $x_0 = \frac{-1}{a}$ نحل المعادلة $f'(x_0) = \frac{-1}{a}$ نطبق	للمنحنى C_{f} يعامد	
القانون كما في (1)	المستقيم ذو المعادلة	
	y = ax + b	
$eta=f'(x_{_{\!0}})(lpha-x_{_{\!0}})+f(x_{_{\!0}})$ نحل المعادلة:	بيّن أنه يوجد مماس	6
\cdot عند إيجاد $x_{_0}$ نطبقالقانون كما في	للمنحنى C_{f} يشمل	
, , , , , , , , , , , , , , , , , , , ,	M(lpha;eta) النقطة	

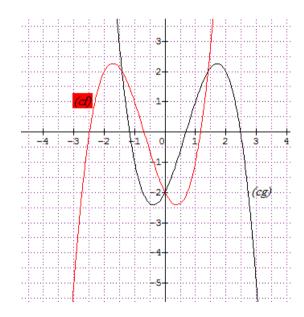
إستنتاج منحنى منحن بيانىر لخر

$$g(x) = -f(x)$$
 الحالة الأولى

و نظير
$$C_f$$
 بالنسبة لمحور الفواصل يثال:



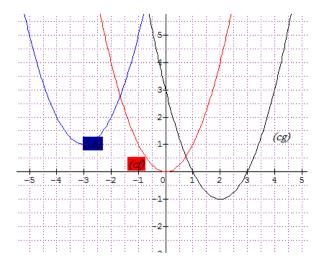
$$g(x) = f(-x)$$
 الحالة الثانية



$$g(x) = f(x+a) + b$$
 الحالة الثالثة

$$\overrightarrow{u}igg(-a \ bigg)$$
 هو صورة C_f بالإنسحاب الذي شعاعه C_g ، $g(x)=(x-2)^2-1$ ، $f(x)=x^2$ مثال:
$$h(x)=(x+3)^2+1$$

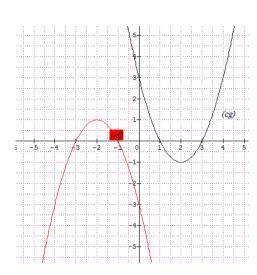
$$\stackrel{
ightarrow}{u}egin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 هو صورة C_f بالإنسحاب الذي شعاعه C_g



$$\stackrel{
ightarrow}{u} egin{pmatrix} -3 \\ 1 \end{pmatrix}$$
 هو صورة C_f بالإنسحاب الذي شعاعه C_h

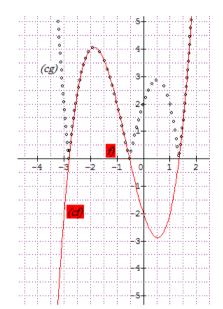
$$g(x) = -f(-x)$$
 الحالة الرابعة

هو نظیر
$$C_f$$
 بالنسبۃ للمبدأ C_g



g(x) = |f(x)| الحالة الخامسة

- "يقع فوق محور الفواصل C_f أي $f(x) \geq 0$ لل C_f ينطبق على C_g لا C_g
 - يقع C_f "يأ $f(x) \leq 0$ لا بالنسبة لمحور الفواصل C_f بالنسبة لمحور الفواصل تحت محور الفواصل المثال:

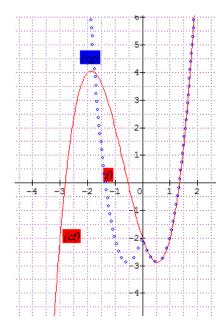


$g(x) = f \mid x \mid$ الحالة الساحسة

عادة ما يطلب إثبات أن الدّالة g دالة زوجية

 $C_{_f}$ منطبق على يا الموجب يكون $c_{_g}$ منطبق على $x \geq 0$ لا

بالنسبة لمحور C_f هو نظير C_f بالنسبة لمحور التراتيب $x \leq 0$ التراتيب



```
التمرين الأول - باك علوم تجريبية 2014 -
```

 $q(x)=2x^3-4x^2+7x-4$ الدالة العددية المعرفة على $\mathbb R$ كمايلى: $g(x)=2x^3-4x^2+7x-4$

. $\lim_{x \to \infty} g(x)$ ، $\lim_{x \to \infty} g(x)$ أأحسب (أ(1

ب) أدر س اتحاه تغير الدالم g ثم شكل جدول تغيراتها.

a. 0,7<lpha<0,8 : قبل حلا وجيدا a حيث g(x)=0 تقبل عادلت g(x)=0

. g(x) ب) استنتج حسب قيم العدد الحقيقي x إشارة

 $f(x)=rac{x^3-2x+1}{2x^2-2x+1}:$ بنعتبر الدالة العددية f المعرفة على $\mathbb R$ كمايلي \star

 $(O.ec{i},ec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f)

. $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to +\infty} f(x)$ أحسب (1

 $f(x) = \frac{1}{2}(x+1) + \frac{1-3x}{2(2x^2-2x+1)} : \mathbb{R}$ من أجل ڪل x من أجل ڪل (1) أبيّن أنه من أجل أب

ب) استنتج أن المنحنى $(C_{_f})$ يقبل مستقيما مقاريا مائلا (Δ) يطلب تعيين معادلت له .

 (Δ) و $(C_{\scriptscriptstyle f})$. أدرس الوضع النسبى للمنحنى

ا بيّن أنه من أجل كل x من $f'(x)=rac{x.g(x)}{(2x^2-2x+1)^2}$: $\mathbb R$ مشتقت (1) أبيّن أنه من أجل كل f'(x)

f با استنتج اشارة f'(x) حسب قيم x ثم شكل جدول تغيرات الدالم $(f(\alpha) \approx -0.1)$ ناخد

f(x)=0 أحسب f(1) ثم حل في $\mathbb R$ المعادلة: f(1)

 $(C_{\scriptscriptstyle f})$ أنشئ المستقيم (Δ) و المنحنى (5

 $h(x)=rac{x^3-4x^2+2x-1}{2x^2-2x\pm1}$: نتكن h الدالة المعرفة على $\mathbb R$ كمايلي: h

.(O.i;j) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_h)

h(x) = f(x) - 2 : \mathbb{R} من x من أجل كل x من أجل كل تحقق أنه من أجل

 (C_h) بتحويل نقطي بسيط يطلب تعيينه : ثم أنشئ (C_f) بتحويل نقطي بسيط يطلب تعيينه (C_h) هو صورة

التمرين الثانى - باك تقني رياضي 2017

 $g(x)=x^3+6x+12$ بعتبر الدّالة العددية g العرفة على ${\mathbb R}$

 $.\ g$ أدرس اتجاه تعير الدّالة (1

 $lpha\in\left]-1,48;-1,47
ight]$ بيّن أن المعادلة g(x)=0 تقبل حلا وحيدا lpha حيث (2 g(x) أشارة x إشارة ويم العدد الحقيقي أشارة وما ثم استنتج

 $f(x) = rac{x^3 - 6}{x^2 + 2}$: نعتبر الدّالة f المعرفة على $\mathbb R$ كمايلي f(x)

(O.i;j) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(C_{\scriptscriptstyle f})$

.
$$\lim_{x \to +\infty} f(x)$$
، $\lim_{x \to +\infty} f(x)$ أنا أحسب أخسب (أ1

$$f'(x) = rac{x.g(x)}{\left(x^2+2
ight)^2}: \mathbb{R}$$
 بيّن أنه من أجل ڪل x من من أجل ڪ

ثم أدرس إتجاه تغير الدالم f و شكل جدول تغيراتها .

$$C_{_f}$$
 أ بيّن أن المنتقيم (Δ) أن المنحنى و (Δ) أن المنتقيم (10 أن المنحنى و أن المنتقيم (10 أن المنتقيم (Δ)

ب) أدرس الوضع النسبي بين المنحنى و المستقيم (Δ) .

.
$$f(lpha)$$
 بیّن آن $f(lpha)=rac{3}{2}$ ثم استنتج حصر ك (3

$$(\Delta)$$
 أرسم المنحنى $C_{_f}$ و ؤ (4)

التمرين الثالث

المنحنى [C) المقابل هو التمثيل البياني للدائّة العددية g على المجال (C) المقابل هو التمثيل البياني الدائّة العددية المحتاي المتحتاي المتحتا $g(x) = x^3 + 3x^2 + 3x - 1$

.
$$g\left(rac{1}{2}
ight)$$
 و حدد $g\left(0
ight)$ و إشارة $g\left(1
ight)$ و إشارة $g\left(1
ight)$ و إشارة $g\left(1
ight)$

$$g(lpha)=0$$
 يحقق $0;rac{1}{2}$ يحقق $lpha$ من المجال وجود عدد حقيقي $lpha$

.
$$]-1;+\infty[$$
 على المجال $g(x)$ على المجال

نعتبر الدالة العددية
$$f$$
 المعرفة على $-1;+\infty$ كمايلي:

$$f(x) = \frac{x^3 + 3x^2 + 3x + 2}{(x+1)^2}$$

 $(\overrightarrow{O.i}; \overrightarrow{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (Γ)

$$f'(x)=rac{g(x)}{(x+1)^3}$$
 : $\left]-1;+\infty
ight[$ من 0 من أجل ڪل 0 من أجل ڪل (أ

. ب) عيّن دون حساب
$$\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$$
 و فسر النتيجة بيانيا .

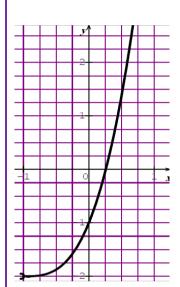
ج)أحسب
$$\lim_{x \to +\infty} \left[f(x) - (x+1) \right]$$
 و $\lim_{x \to -\infty} f(x)$ و فسر النتيجتين بيانيا .

د) شكل حدو ل تغير ات الدّالة f

$$10^{-2}$$
 ناخذ $f(lpha)$ عیّن مدور ($lpha pprox 0,26$ ناخذ (Γ) عیّن مدور (Γ) ارسم

التمرين الرابع

$$g(x)=x^3-3x-3$$
 دالمت معرفت على g باية g دالمت معرفت على g . $\lim_{x o +\infty} g(x)$ ، $\lim_{x o -\infty} g(x)$ أحسب (1



\mathbb{R} أدرس اتجاه تغير الدّالة g على \mathbb{R} .	. \mathbb{R}	و على	ير الدّالة	در س اتحاه تغ	2) أ
---	----------------	-------	------------	---------------	------

بيّن أن المعادلة
$$lpha=0$$
 تقبل حلا وحيدا $lpha$ على المجال: $\left[2;rac{9}{4}
ight]$ ، ثم أعط حصرا للعدد $g(x)=0$ عين $g(x)=0$ عين (3

g(x) إشارة

2,09	-0.14
2,10	-0,04
2,11	0,06
2 12	0.17

: نعتبر الدالة العددية
$$f$$
 المعرفة على $\mathbb{R}--1;1$ كمايلي

$$f(x) = \frac{2x^3 + 3}{x^2 - 1} + 1$$

 $(\overrightarrow{O.i;j})$ و ليكن (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس

أحسب نهايات الدّالة f بجوار مجموعة تعريفها .ماذا تستنتج (1

$$f'(x) = \frac{2x.g(x)}{(x^2-1)^2}: \ \mathbb{R} - \ -1;1$$
 بيّن أنه من أجل ڪل x من x من (2)

- . أدرس إتجاه تغير الدّالة f ثم شكل جدول تغيراتها3
- f(lpha)بيّن أن f(lpha)=3lpha+1 ثم عين حصر للعدد (4
- و (Δ) برهن أن المستقيم (Δ) ذو المعادلة y=2x+1 مقارب مائل للمنحنى (C_f) . ثم أدرس الوضع النسبي بين (S_f) برهن أن المستقيم (C_f)
 - (Δ) جد فواصل النقط من $(C_{_f})$ التي يكون فيها الماس موازيا للمستقيم المقارب (6
 - . أرسم $(C_{_f})$ و المستقيمات المقاربة (7
 - f(x)=m ناقش بيانيا حسب قيم الوسيط m عدد و إشارة حلول المعادلة (8

التمرين الخامس الحزء الأول

، الدّالة المعرفة على
$$\mathbb{R}$$
 كمايلي $2: 2^2-3x^3-3$ و $g(x)=x^3-3x^2-2$ تمثيلها البياني كما هو مبين في الشكل g

1 المنتقيم (D) هو مماس للمنحنى المنحنى النقطة ذات الفاصلة

$$g''(1)$$
 ، $g'(1)$ ، $g'(2)$ ، $g'(0)$ عيّن (1) عيّن

 $\, . \, g \,$ شكل جدول تغيرات الدّالة (2

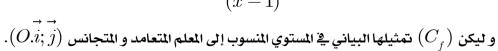
$$3;rac{7}{2}$$
 عدد إشارة $g(3)$ عرد إشارة $g(3)$ عم استنتج وجود عدد حقيقي a وحيد من المجال a

3,1<lpha<3,2 بحيث: g(lpha)=0 . ثم تحقق أن

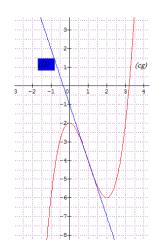
 \mathbb{R} على g على (4

لجزء الثاني

$$f(x)=rac{x^3+1}{(x-1)^2}$$
: الدّالة المعرفة على f



. $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to -\infty} f(x)$ أحسب (1



ا أحسب
$$f(x)$$
 ، $\lim_{x \xrightarrow{>} 1} f(x)$ ، $\lim_{x \xrightarrow{\leq} 1} f(x)$ ، ماذا تسنتنج (2

$$f'(x)=rac{g(x)}{\left(x-1
ight)^{3}}$$
: فإن $x\in\mathbb{R}-1$ فإن في أنه من أجل كل $x\in\mathbb{R}-1$

استنتج إتجاه تغير الدّالم f ثم شكل جدول تغيراتها .

. هادلة له يطلب تعيين معادلة له
$$\lim_{x \to \infty} \left[f(x) - (x+2) \right]$$
 أحسب (Δ) يطلب تعيين معادلة له (4

.
$$(\Delta)$$
 و $(C_{\scriptscriptstyle f})$ أدرس الوضع النسبي للمنحنى (5

$$\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$$
 عيّن دون حساب (6

$$10^{-2}$$
بيّن أن $f(lpha)$ تدور النتائج إلى $f(lpha)=3+rac{6lpha}{(lpha-1)^2}$ بيّن أن $f(lpha)=3+rac{6lpha}{(lpha-1)^2}$

$$1-rac{1}{3}$$
 أكتب معادلة المستقيم T مماس المنحنى C_f هماس المنحنى (8 أكتب معادلة المستقيم (8 أ

. مع محوري الإحداثيات ($C_{_f}$) مع محوري الإحداثيات (9

$$(10)$$
 أرسم $(C_{\scriptscriptstyle f})$ أرسم (Δ

f(x) = x + m ناقش بيانيا حسب قيم الوسيط m عدد و إشارة حلول المعادلة (11 الجزء الثالث

الدّالة اللعرفة على
$$\mathbb{R}-1$$
 بـ: $\mathbb{R}-1$ الدّالة اللعرفة على h

ا أكتب h دون رمز القيمة المطلقة.

. بيّن كيفية رسم $(C_{_{b}})$ إنطلاقا من $(C_{_{f}})$ ثم أرسمه (2

