المستقيمات المقاربة	
الجواب	السنؤال
$x=a$: يقبل مستقيم مقارب عمودي معادلته $(C_f$	$\lim_{x \to a} f(x) = \infty$: فسر بیانیا
$y=b$: يقبل مستقيم مقارب أفقي معادلته $(C_f$	$\lim_{x\to\infty} f(x) = b$: فسر بیانیا
∞ عند $y=ax+b:$ عند $y=ax+b$ عند عند	$\lim_{x \to \infty} \left[f(x) - (ax + b) \right] = 0$ فسر بیانیا : فسر بیانیا
$\lim_{x\to\infty} \left[f(x) - (ax+b) \right] = 0$ نبین أن $0:$	$\left(C_{f} ight)$ بين أن المستقيم $y=ax+b$ مقارب مائل لـ $y=ax+b$
$\lim_{x o \infty} g\left(x\right) = 0$ و $f\left(x\right) = ax + b + g\left(x\right)$: لدينا $y = ax + b$ و مقارب مائل معادلته $y = ax + b$ عند $y = ax + b$	بین أن $(C_f$ یقبل مستقیم مقارب مائل یطلب تعیین معادلته
$f\left(x ight)-y$: ندرس إشارة الفرق $f\left(x ight)-y$ ندرس إشارة الفرق $f\left(x ight)-y$ يقع فوق $\left(\Delta ight)$ يقع فوق $\left(\Delta ight)$ يقع تحت $\left(\Delta ight)$ يقع تحت $\left(\Delta ight)$ إذا كان $\left(\Delta ight)-y$ فإن $\left(\Delta ight)$ يقطع $\left(\Delta ight)$	(Δ) : $y=ax+b$ و المستقيم النسبي للمنحني المنحني (C_f)
و $\left(C_{g} ight)$ منحنیین متقاربین $\left(C_{f} ight)$	$\lim_{x \to \infty} \left[f(x) - g(x) \right] = 0 :$ فسر بیانیا
مبرهنة القيم المتوسطة	
ا <mark>لجواب</mark>	السؤال
$egin{bmatrix} a;b \end{bmatrix}$ مستمرة ورتيبة تماما على المجال f	: حيث $lpha$ عيد $f\left(x ight)=0$ بين أن المعادلة
$f(a) \times f(b) \prec :$ يتحقق يتحقق يتحقق	يقطع محور الفواصل $a\prec \prec (C_f)$ بين أن a
ومنه حسب مبرهنة القيم المتوسطة المعادلة $f\left(x ight)=0$ تقبل حلا	lpha في نقطة وحيدة فاصلتها
$f\left(lpha ight)\!=\!0$: وحيدا $lpha$ يحقق	
[a;b]مستمرة ورتيبة تماما على المجال مستمرة ورتيبة المحال المحال المحال المحال	: حيث أن المعادلة $f\left(x\right)=k$ تقبل حلا وحيدا $lpha$
$k \in [f(a);f(b)]$: يتحقق 2	يقطع المستقيم $(C_f$) بين أن $a \prec \;\; \prec$
ومنه حسب مبرهنة القيم المتوسطة المعادلة $f\left(x ight. ight)$ تقبل حلا	lpha ذو المعادلة $y=k$ في نقطة وحيدة فاصلتها
$f\left(lpha ight)\!=\!k:$ وحيدا $lpha$ يحقق	
الاشتقاقية	
ا <mark>لجواب</mark>	ا <mark>لسؤال</mark>
$f'(x_0)\!=\!l$ و x_0 تقبل الاشتقاق عند x_0 عند و x_0 ماسا معامل توجيهه x_0 يقبل في النقطة x_0 النقطة x_0	$\lim_{x \to x_0} \frac{f\left(x\right) - f\left(x_0\right)}{x - x_0} = l$ فسر النتيجة $\lim_{h \to 0} \frac{f\left(x_0 + h\right) - f\left(x_0\right)}{h} = l$: أو

$f'(x_0)=0$ و x_0 تقبل الاشتقاق عند x_0 و x_0 مماسا يوازي وقبل في النقطة x_0 ; x_0 مماسا يوازي الفواصل .	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0 : $ فسر النتيجة	
x_0 لا تقبل الاشتقاق عند x_0 x_0 عند يقبل الاشتقاق عند x_0 مماسا يوازي x_0 يقبل في النقطة x_0 معادلته x_0 محور التراتيب معادلته معادلته x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty : $ فسر النتيجة	
x_0 عند x_0 كا تقبل الاشتقاق عند x_0 عند x_0 كن تقبل الاشتقاق عند x_0 ; x_0 انقطة x_0 يقبل في النقطة x_0 النقطة x_0 النقطة x_0 والنقطة x_0 والنقطة x_0 والنقطة x_0 المي نقطة زاوية x_0 والنقطة x_0 والنقطة x_0 والنقطة والنقطة راوية x_0 والنقطة راوية x_0	فسر النتيجة : $l_1 = \lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0} = l_1$ فسر النتيجة : $l_1 \neq l_2$ و $\lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0} = l_2$	
المماسات		
الجواب	السؤال	
نحسب $f'(x_0)$ و $f'(x_0)$ نعوض قیمهما في الدستور: $y = f'(x_0)(x-x_0) + f(x_0)$	$x_{_0}$ اكتب معادلة المماس للمنحني (C_f) عند النقطة ذات الفاصلة	
نبحث x_0 عن بحل المعادلة $f\left(x_0\right)=b$ ثم نكتب معادلة المماس عند x_0 حسب الدستور	b عند النقطة ذات الترتيب اكتب معادلة المماس للمنحني $\left(C_f ight)$ عند	
$f'(x_0)$ هو المماس هو $f'(x_0) = 0$: ميل المماس عند x_0 افقي يكافئ $x_0 = 1$ $f'(x_0) = \frac{y_B - y_A}{x_B - x_A}$: هماس مائل يكافئ $x_0 = 1$ المماس مائل يكافئ $x_0 = 1$	$f^{\prime}(x_{0})$ عين بيانيا قيمة	
نبحث عن x_0 بحل المعادلة $x_0 = a:$ وعدد حلول هذه المعادلة وعدد المماسات	a بين أنه يوجد مماس أو اكثر للمنحني (C_f) معامل توجيهه يساوي	
نبحث عن x_0 بحل المعادلة : $f'(x_0) = a$ وعدد حلول هذه المعادلة هو عدد المماسات	بين أنه يوجد مماس أو اكثر للمنحني (C_f) يوازي المستقيم (Δ) : $y=ax+b$	
$\beta = f'(x_0)(\alpha - x_0) + f(x_0)$: نبحث عن x_0 من المعادلة	$\mathrm{A}(lpha;eta)$ بين أنه يوجد مماس أو اكثر للمنحني (C_f) يشمل النقطة	
نحل المعادلة $1 = -1$ ونبحث عن x_0 وعدد حلول هذه المعادلة يدل على عدد المماسات	(Δ) : $y=ax+b$ هل توجد مماسات للمنحني $(C_f$ تعامد المستقيم	
AISSA ZERROUKI		

<mark>(2019/ 2018)</mark>

 ت <mark>عیین a ، a و c من عبارة الدالـة</mark>	
الجواب	السؤال
$f'(x_0) = 0$ و $f(x_0) = y_0$ نحل المعادلتين	يقبل في النقطة $A\left(x_{_0},y_{_0} ight)$ مماسا يوازي محور الفواصل $\left(C_{_f} ight)$
$f'(x_0) = a$ يحل المعادلتين $b: ax_0 + b: f(x_0)$ و	: مماسا معادلته x_0 يقبل في النقطة ذات الفاصلة الفاصلة (C_f) يقبل في النقطة (Δ) : $y=ax+b$
$f'(x_0) = 0$ و $f(x_0) = y_0$ نحل المعادلتين	$\left(C_{f}^{} ight)$ النقطة $A\left(x_{0}^{};y_{0}^{} ight)$ قيمة حدية للمنحي
$f'(x_0) = \frac{y_B - y_A}{x_B - x_A}$ و $f(x_A) = y_A$: نحل المعادلتين	مماسا يشمل النقطة $A\left(x_{_0};y_{_0} ight)$ مماسا يشمل النقطة $B\left(x_{_B};y_{_B} ight)$
<mark>عناصر تناظر منحني</mark>	
الجواب	السؤال
$f\left(2\alpha-x\right)+f\left(x\right)=2\beta$: نبین أن	$\left(C_{f} ight)$ بين أن النقطة $A\left(lpha;eta ight)$ مركز تناظر للمنحني
$f(2\alpha-x)=f(x)$: نبین أن	$(C_f$) بين أن المستقيم $x=lpha$ محور نتاظر للمنحني
f(-x)=f(x): نبین أن	بين أن الدالة f زوجية
f(-x) = -f(x): نبین أن	بين أن الدالة f فردية
نستنتج أن الدالة f فردية و (C_f) متناظر بالنسبة للمبدأ	بین أن $0: f\left(-x\right)+f\left(x\right)=0$ وماذا تستنتج
نستنتج أن الدالة زوجية f و $\left(C_{f} ight)$ متناظر بالنسبة لمحور التراتيب	بین أن $0: f\left(-x\right) - f\left(x\right) = 0$ وماذا تستنتج
نستنتج أن $(C_f$ يقبل النقطة $\omega(lpha;eta)$ كمركز تناظر	بین أن $eta: f\left(2lpha\!-\!x ight)$ بین أن $eta: f\left(2lpha\!-\!x ight)$
نستنتج أن $(C_f$ يقبل المستقيم ذو المعادلة $x=lpha$ كمحور تتاظر	بین أن $f\left(2lpha-x ight)=f\left(x ight)$ وماذا تستنتج
نقاظ خاصة	
الجواب	السؤال
ولم تغیر إشارتها عند x_0 فإن النقطة x_0 عند x_0 عند x_0 فإن النقطة $\omega(x_0;f(x_0))$ هي نقطة انعطاف x_0 عند x_0 عند x_0 عند x_0 هي نقطة انعطاف $\omega(x_0;f(x_0))$ هي نقطة انعطاف	بین أن (C_f) یقبل نقطة انعطاف ω یطلب تعیینها
$f\left(0 ight)$ نضع $x=0$ ونحسب	عين نقاط تقاطع المنحني (C_f) مع محور التراتيب
$f\left(x\right)=0$ نحل المعادلة	عين نقاط تقاطع المنحني (C_f) مع محور الفواصل
إذا غير المنحني (C_f) وضعيته بالنسبة للماس نستنتج أن النقطة $\omega(x_0;f(x_0))$	ادرس وضعية المنحني (C_f) بالنسبة الي المماس عند النقطة ذات الفاصلة x_0 وماذا تستنتج
(2019/ 2018)AISSA ZERROUKI	