ملفصات الباك

البحور الأول

• شعب علية

• الدوال العددية

• الاستسرارية ومبرهنة القيم المتوسطة

الاستبرارية

a وبشمل \mathbb{R} من I ما معرفت على مجال f والتf والتf والتf من f

a نغبر شلاها عند f

- $\lim_{x \to a} f(x) = f(a)$ مسنمره عند a من البسار معناه f
- $\lim_{x \to a} f(x) = f(a)$ من البمبن معناه a من عند a من البمبن معناه f
 - مستمرة عند a إذا وفقط إذا كانت مستمرة عنده من البسار ، معناه البمين ومن البسار ، معناه

$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = f(a)$$

ذاك شكل واحد f

مستمرهٔ عند a معناه f

$$\lim_{x \to a} f(x) = f(a)$$

النفسير البياني

في جوار العدد a بمكن رسم (C_f) ون رفع الفلم (البد)

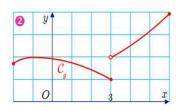
2 استسراریة دالهٔ علی مجال

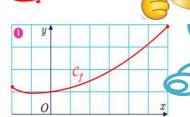
- مستمرة على المجال المفتوح a;b[إذا كانت مستمرة عند كل عدد حقيقي منه.
- a مستمرة على المجال المغلق a;b إذا كانت مستمرة على المجال a;b ومستمرة عند a;b من البمين وعند a;b من البسار.

النفسير البياني

مستمرهٔ على مجال I من \mathbb{R} معناه بملن رسم C_f دون رفع القلم (البد) على هذا المجال f

الاستمرار فإلمحاولة هوالطريق الحتم للنجاح





<u> ثاك</u> م م

- مستدة على المجاك [-2;6]. [-2;6]
 - 8 ليست مستمرة على المجال
 - . كانما غير مستمرة عند $\left[-2;6\right]$

3 خواص الدوال الستسرة

- \mathbb{R} الدوال تحتبرات الحدود ، \cos و \sin مستمره على \mathbb{R}
- الدوال الناطفة ، الصماء، الأسبّة و اللوغاربنيمة مستمرة على كل مجال من مجموعة تعريفها.
 - الدوال النائجة عن مجموع، جداء، حاصل فسمة، مركب دوال مستمرة هي دوال مستمرة.

تمبرهنة القيه المتوسطة

مبرهنهٔ الغبم المتوسطهٔ لا تهتم بتعبین غبم الحلول للمعادلهٔ f(x)=k على محال a;b حبث f(x)=k دالهٔ معطاهٔ و aعدد حفیفی بل براثبات وجود أو وحدانیهٔ هذه الحلول.

f(x)=k المعالمة: العاملة

وحدانية الصل	وجود العلول	الدطلوب
$egin{bmatrix} a;b \ a;b \end{bmatrix}$ معرفهٔ ومسنمرهٔ علی f	$egin{bmatrix} a;b \ a;b \end{bmatrix}$ معرفت ومستمره على $f(a)$ معرور يبن $f(a)$ و $f(b)$	الشروط
المعادلة $\dfrac{f\left(x ight)=k}{a\in\left]a;b ight[}$ تقبل ملا وحميدا $lpha\in\left]a;b ight[}$	المعادلة $\dfrac{f\left(x ight)=k}{f\left(x ight)=a}$ تقبل على الأقل حمار $lpha\in\left]a;b ight[$	النتيعة
ره المعادلة a المعادلة a المعادلة a المعادلة a المعادلة a المعادلة a المعادلة المعادلة a المعادلة a المعادلة a المعادلة a المعادلة a	y بفطع المستفية y بونه المعادلة $y=k$ خاله المعادلة $y=k$ خاله في نفطة خلف في نفطة $\alpha\in \left]a;b\right[$ فاصلنها	التفسير البياني

لما بلون أحد أطراف المجال [a;b] هو $\infty \pm \infty$ ولا أحد أطراف المجال [y] هو (x,b) الله (x,b) الله ألى (x,b) الشاطر (x,b) المحون (x,b) المحور بحساب النهاطر (x,b) المحور بحساب النهاطر (x,b) النهاطر (x,b) النهاطر (x,b) النهاطر والنهاط النهاط الن

f(x)=0 البعادلة خاصة:

وحدانية الصل	פجود العلول	البطلوب
$egin{bmatrix} a;b \ az,b \end{bmatrix}$ معرفهٔ ومسنمرهٔ علی f f f رنببهٔ نماما علی f f f f f f f g	$\begin{bmatrix} a;b \end{bmatrix}$ معرفت ومستمرهٔ علی f معرفت f معرفت f معرفت ومستمرهٔ علی f	الشروط
المعادلة $\dfrac{f\left(x ight)=0}{lpha\in\left]a;b ight[}$ تقبل حملا وحيدا $lpha\in\left]a;b ight[}$	المعادلة $\dfrac{f\left(x ight)=0}{a}$ تقبل على الأقل حملا $lpha \in \left]a;b ight[$	النثيعة
f(b)>0 g b a c		التفسير البياثي

إيجاد حصر لعل معادلة باستعبال خوارزمية التنصيف

 $f(a) \times f(b) < 0$ بخبث [a;b] بخبث نماما على مجال $f(a) \times f(b) < 0$ بخبث $a < \alpha < b$ خبث $a < \alpha < b$ فإنه، حسب مبرهنه الفبم المتوسطة، المعادلة f(x) = 0 نقبل حلا وحبدا $a < \alpha < b$ خبث $a < \alpha < b$ نقبل حلا وحبدا $a < \alpha < b$ خبث $a < \alpha < b$ نقبل حلا وحبدا $a < \alpha < b$ نقبل حلا وحبدا $a < \alpha < b$ نقبل حلا وحبدا نقب وحبدا نقب والمتحدد $a < \alpha < b$ نقب التنصيف (Dichotomie) كما بلي:

- [a;b] نحسب $m=\frac{a+b}{2}$ مركز المجال $m=\frac{a+b}{2}$
- $a < \alpha < m$ فإن $f(a) \times f(m) < 0$ فإن .
- $m < \alpha < b$ فإن $f(m) \times f(b) < 0$ فإن $f(m) \times f(b) < 0$
- نواصل بنفس الطربقة من خلال تعويض a أو b ب m إلى غابة الحصول على الحصر المرغوب فيه. (سعة الحصر غالبا تحدّد في السؤال)

الإياب بع الله في والعن بع العن ... وتعل جادي وستع بالإجرال