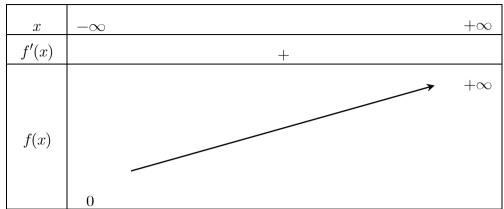
مسألة أسية رقم 03

العلاقة: $x
ot\in\{-1,1\}$ عيّن جميع الدّوال $f:\mathbb{R} o\mathbb{R}$ التي تحقّق من أجل كل عدد حقيقي $f:\mathbb{R} o\mathbb{R}$ العلاقة:

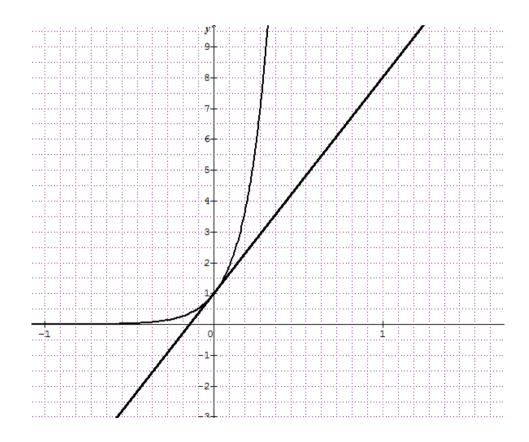
$$.f\left(\frac{x-3}{x+1}\right) + f\left(\frac{3+x}{1-x}\right) = x....(1)$$

- $g(x)=e^{(2-2x^2)f(x)}$ بعتبر الدّالّة g المعرّفة على $\mathbb R$ بناية (2
 - 1. $-\infty$ و $+\infty$ عند q الدالم أحسب نهايات الدالم أ
 - $\,.\,g\,$ ب أحسب $\,g'\,$ مشتقة الدّالة
- ج) إستنتج إتجاه تغير الدّالة g . ثم شكل جدول تغيراتها .
- $x_0=0$ عيّن معادلة الماس $x_0=0$ للمنحنى $x_0=0$ عند النّقطة ذات الفاصلة (3
 - $c_{q}^{\overrightarrow{i},\overrightarrow{j}}$ التّمثيل البياني للدّالّة $c_{q}^{\overrightarrow{i}}$ والمماس ($C_{q}^{\overrightarrow{i}}$ معلم (4



- لتكن f هي حل المعادلة (1) . من أجل كل عدد حقيقي $x \notin \{-1,1\}$ ، نقوم بإجراء التّبديلين البسيطين التّاليين المتغبّر:
- نضع $t=\frac{x-3}{x+1}$ فنجد أنّ $x=\frac{3+t}{1-t}$ من أجل $t=\frac{x-3}{x+1}$ والمعادلة (1) تكتب على الشكل: $x \notin \{-1,1\}$ من أجل كل $f(t)+f\left(\frac{t-3}{t+1}\right)=\frac{3+t}{1-t}....(*)$
- نضع $t=\frac{x+3}{1-x}$ فنجد أنّ $x=\frac{t-3}{1+t}$ من أجل $t=\frac{x+3}{1-x}$ والمعادلة (1) تكتب على الشكل: $x \neq \{-1,1\}$ من أجل كل $f(t)+f\left(\frac{t+3}{1-t}\right)=\frac{t-3}{1+t}....(**)$

$$f(x)=rac{4x}{1-x^2}-rac{x}{2}=rac{x^3+7x}{2-2x^2}$$
 بـ : $\mathbb{R}-\{-1,1\}$ بي معرّفة على $f(t)=rac{4t}{1-t^2}-rac{t}{2}$


ي $g(x)=\lim_{x\to -\infty}g(x)=\lim_{x\to -\infty}e^{x^3+7x}=0$ مقارب أفقي ل $g(x)=\lim_{x\to -\infty}g(x)=\lim_{x\to -\infty}e^{x^3+7x}=0$ أنهايات الدّالّة $g(x)=\lim_{x\to -\infty}g(x)=\lim_{x\to -\infty}e^{x^3+7x}=+\infty$ جوار $g(x)=\lim_{x\to -\infty}e^{x^3+7x}=+\infty$ مقارب أفقي ل

و $e^{x^3+7x}>0$ و و قابلة للإشتقاق على \mathbb{R} و و اللّتها المشتقّة هي: $g'(x)=(3x^2+7)e^{x^3+7x}$ و و و اللّتها المشتقّة هي: g'(x)>0 و قابلة للإشتقاق على g'(x)>0 و و اللّتالي الدّالّة g متزايدة تماماً على g'(x)>0 و تغيّرات الدّالّة g هو:

y=f'(0)(x-0)+f(0) عند النّقطة ذات الفاصلة $x_0=0$ تُعطى بـ: T_g عند النّقطة ذات الفاصلة (T_g) عند النّقطة ذات الفاصلة (T_g) عند النّقطة ذات الفاصلة الفاصلة (T_g) عند النّقطة ذات الفاصلة الفاصلة الفاصلة الماس (T_g) عند النّقطة ذات الفاصلة الفاصلة الفاصلة الماس (T_g) عند النّقطة ذات الفاصلة الفاصلة الفاصلة الماس (T_g) عند النّقطة ذات الفاصلة الفاصلة الفاصلة الفاصلة الفاصلة الماس (T_g) عند النّقطة ذات الفاصلة الفاصلة

4) التّمثيل البياني في الشكل الموالى:

