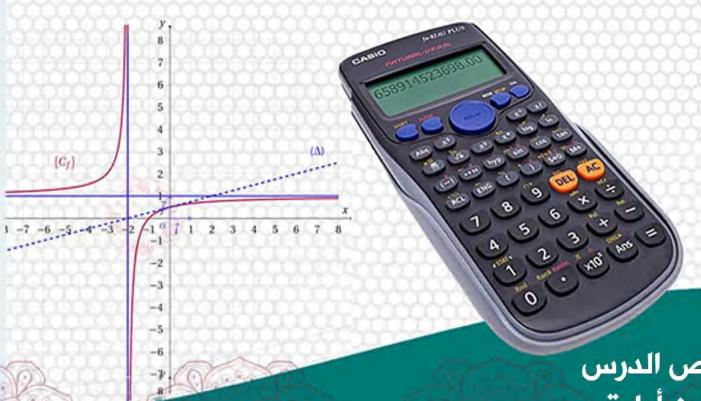
الدوال الأسية

دراسة الدالة الأسية النيبيرية

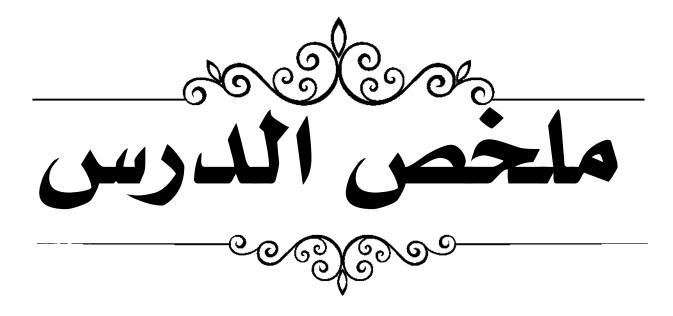


ملخص الدرس تمارین أولیة نماذج بكالوریا بكالوریات سابقة محلولة

ُالشُّعب: علوم تجريبية - تقني رياضي - رياضيات

من إعداد الأستاذ: لبصير يسين

2	خص الدرس	ملد	1
3	تعریف وخواص:	1	
4	نهايات الدالة الأسية:	2	
5	قانون الاشتقاق	3	
5	دراسة إشارة بعض العبارات الأسية:	4	
6	سلة تمارین	سل	2
7	خواص الدالة الأسية (الخواص الجبرية - النهايات - الاشتقاقية)	1	
10	y'=ay+b و $y'=ay+b$ المعادلات التفاضلية من الشكل و $y'=ay+b$	2	
12	ليات بكالوريا	حوا	3
13	نماذج بڪالوريا	1	
24	نماذج خاصة بشعبتي تقني رياضي ورياضي فقط	2	
26	بكالوريات جزائرية شعبة علوم تجريبية	3	
36	بكالوريات جزائرية شعبة تقني رياضي	4	
42	بكالوريات جزائرية شعبة رياضيات 	5	



أظف إلى

أظف إلى

مطويتك

سلسلة تمارين

تعریف وخواص: 🗲

الدالة الأسية:

1

توجد دالة وحيدة f قابلة للإشتقاق على $\mathbb R$ بحيث f'=f'=f و f=f(0) نرمز إلى هذه المطويتك "exp" ونسميها الدالة الأسية النيبيرية

نتائج وخواص جبرية:

1 day 2022

نتائج :

 $\exp(0) = 1 \mathbb{Z}_0$

 $exp'(x) = exp(x) \angle$

العدد e والترميز e: e

 $e\approx 2.718281828$ مو صورة العدد 1 بالدالة الأسية أي $e=\exp(1)$. $e=\exp(1)$ قطينا الحاسبة $e \approx 2.718281828$ من أجل كل عدد صحيح نسبي $e \approx e \exp(n) = \exp(n)$ ، لاينا إذن: من أجل كل عدد صحيح نسبي $e \approx e \exp(n) = e^n$ ، $e \approx e \exp(n) = e^n$ عدد صحيح نسبي $e \approx e \exp(n)$

. e^x بـ $\exp(x)$ اصطلاحا نرمز، من أجل كل عدد حقيقي x، إلى

خواص جبرية :

- $\cdot e^{x} \neq 0$ 0
- $.e^{-x} = \frac{1}{e^x}$ 2
- $\cdot e^{x+y} = e^x \times e^y \quad \mathbf{6}$
 - $\cdot e^{x-y} = \frac{e^x}{e^y} \ \mathbf{4}$
 - $\cdot e^{nx} = \left[e^{x}\right]^{n}$ 6
 - $\cdot e^0 = 1$ **6**

- من کل عدد حقیقی x ویمکن $e^x \succ 0$
 - $e^{w}\succ 0$ تعميمها إلى مايلى:
- $e^x \prec ... = y$ olico $e^x = e^y$
- $e^x \succ e^y$ $x \prec y$ olico e^y
 - .x ≻ y **olico**
- عدد حقیقی lpha عدد حقیقی lpha عدد حقیقی $e^{lpha}=a$ ه
 - موجب تماما.

 $(0)(\infty)$ حالة

لإزالتها ننشر (فك الأقواس)

ونستفيد من المبرهنة :

 $\lim_{x \to -\infty} x^n e^x =$

 $_{\{}^{0^{+}}:$ زوجي n

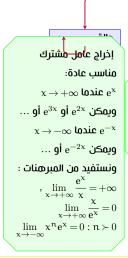
n فردي : [—]0

2

نهايات الدالة الأسية:

الحالة العامة	الحالة الخاصة
$e^{+\infty} = +\infty$	$\lim_{x\to +\infty}e^x=+\infty$
$e^{-\infty} = 0$	$\lim_{x \to -\infty} e^x = 0$
$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$	$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$
$\lim_{x \to +\infty} \frac{e^{x}}{x^{n}} = +\infty$ $\lim_{x \to +\infty} \frac{x^{n}}{e^{x}} = 0$	$\lim_{x \to +\infty} \frac{x}{e^x} = 0$
$\lim_{x\to-\infty}x^{n}.e^{x}=0$	$\lim_{x \to -\infty} x \cdot e^x = 0$
$\lim_{u\to 0}\frac{e^u-1}{u}=1$	$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$ وأيضا و $\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$

إزالة حالات عدم التعيين في الدالة ا<u>لأ</u>سية



$\lim_{x \to -\infty} \mathrm{e}^{-x} + x :$ حساب النهاية حالة عدم التعيين من الشكل $\cdot +\infty -\infty$ $f(x) = e^{-x} + x$ $=\!e^{-x}\left[1\!+\!\frac{x}{e^{-x}}\right]$ $(x ightarrow -\infty$ لأن e^{-x} (أخرجنا) $= e^{-x} \left[1 + x e^x \right]$ $\lim_{x \to -\infty} f(x) = +\infty[1+0] = +\infty$ $\lim_{x\to -\infty} xe^x = 0$: حیث أن

نخرج عامل مشترك مناسب من البسط والمقام إذا كان المقام أكثر من حد $\frac{e^x}{x \to +\infty}$ ونستفید من المبرهنات: $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$, $\lim_{x \to +\infty} \frac{x}{e^x} = 0$ مثال توصیحي 1: حساب النهایة : $\frac{e^{x}-1}{e^{x}}$ $\frac{\infty}{\infty}$ حالةً عدم التعيين من الشكل $f(x) = \frac{e^x - 1}{x} = \frac{e^x}{x} - \frac{1}{x}$ $\lim_{x \to 0} f(x) = +\infty - 0 = +\infty$ $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty : كيث أن$ مثال توصيحي 2: حساب النهاية : $\lim_{x o +\infty} \frac{x-1}{\mathrm{e}^x-1}$ دالة عدم التعيين من الشكل نخرج x کعامل مشترك، $f(x)=rac{x-1}{e^x-1}$ \cdot من البسط ، و e^{x} من المقام ، ومنه $f(x) = \frac{x\left(1 - \frac{1}{x}\right)}{e^x\left(1 - \frac{1}{e^x}\right)}$ $= \frac{x}{e^x} \left[\frac{1 - \frac{1}{x}}{1 - \frac{1}{e^x}} \right]$

 $rac{\infty}{\infty}$ حالة $\frac{0}{0}$ حالة نفرق الكسر إذا نغير شكل الدالة f كان المقام حد واحد ونستفيد من المبرهنة : $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ مثال توضیحي : $\lim_{x \to +\infty} f(x) = 0 \left[\frac{1-0}{1-0} \right] = 0$ $\lim_{x \to +\infty} \frac{x}{e^x} = 0 : 2$ میث آن

مثال توضيحي : حساب النهاية : $\lim_{x \to -\infty} (x-1)e^x$ حالة عدم التعيين من الشكل $(-\infty)(0)$ $f(x) = (x-1)e^x$ $=xe^{x}-e^{x}$ $\lim_{x \to -\infty} f(x) = 0 - 0 = 0$ $\lim_{x\to -\infty} xe^x = 0$: حیث أن

قانون الاشتقاق 🗲

 $f(x)=e^{\mathfrak{u}(x)}$ لتكن f الدالة المعرفة كما يلى

 $\mathbf{f'}(\mathbf{x}) = \left[e^{\mathbf{u}(\mathbf{x})}\right]' = \mathbf{u'}(\mathbf{x}) imes e^{\mathbf{u}(\mathbf{x})}$ اذا كانت \mathbf{u} قابلة للاشتقاق على مجال \mathbf{I} فإن \mathbf{f} قابلة للاشتقاق ولدينا:

ه ملاحظة:

3

تبقى قواعد الاشتقاق المعروفة سابقا صحيحة حسب شكل الدالة المعطاة.

أولا:

 $\mathfrak{u}(\mathfrak{x})$ هنا الإشارة من إشارة الدالة $\left[(\mathfrak{u}(\mathfrak{x})) imes e^{\triangle}
ight]$

ثانيا:

لدراسة إشارة عبارة من الشكل ع $a.e^{\alpha x+\beta}+b$ حيث ه $a.e^{\alpha x+\beta}+b$ أعداد حقيقة مع $a.e^{\alpha x+\beta}+b$ نميز الحالات الأتية:

- $a.e^{\alpha x + \beta} + b > 0$ و موجبان فإن b و a إذا كان $e^{\alpha x + \beta}$
- $a.e^{\alpha x + \beta} + b \prec 0$ اِذَا كَانَ a وَ d سَالْبَانَ فَإِن
- إذا كان a و a مختلفان في الإشارة فإن للمعادلة b = a حل وحيد aيمكن إيجاده بكل بساطة (سنتمرن على ذلك في التطبيقات) والإشارة تستنتج كما يلى:

X	$-\infty$	χ_0	+∞
$a.e^{\alpha x + \beta} + b$	a.a	0 عكس إشارة	ن فس إشارة α.α

ثالثا:

لدراسة إشارة العبارة $ae^{2x}+be^x+c$ نقوم بما يلي:

- $aX^2 + bX + c$ فتصبح العبارة من الشكل: $X = e^x$
 - 🗸 نحل المعادلة الأخيرة من الدرجة الثانية.
- ◄ نحلل العبارة الأولى اعتمادا على حلول المعادلة الثانية.
 - 🗸 ندرس إشارة كل حد .



خواص الدالة الأسية (الخواص الجبرية – النهايات – الاشتقاقية) 🗲

بسط العبارات التالية:

بین من أجل کل عدد حقیقی χ مایلی:

 $e^{2x} + e^x - 6$ 7

 $e^{2x} - 2e^x + 3$ 8

 $\frac{x^3}{e^x+1}$ 7

 $\frac{x^3}{e^{-x}+1}$ 8

 $e^{2x} - xe^x + 1$ 9

 $(2x-1)e^{-x}+4e^{-x}$ 9

$$(e^{x})^{3} \times e^{-4x}$$
 1

$$\frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

$$\frac{e^{2x+1}}{e^{-x+1}}$$
 2

1

$$e^{-x} - e^{-2x} = \frac{e^{x} + 1}{e^{2x}}$$

$$\frac{e^x + e^{-x}}{e^{2x}} \quad \boxed{3}$$

ادرس إشارة العبارات الأتية:

$$e^{2-x}-3$$
 4

$$2e^{x+1}+1$$
 1

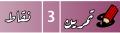
$$-4e^{x+1}+12$$
 5

$$-e^{x^2+2}-3$$
 2

 $\frac{1}{2}e^{2x-1}-2$ 3

$$e^{2x} - 7e^x + 12$$
 6

$$e^{2x} - 7e^x + 12$$
 6



 $-\infty$ احسب نهایات الدوال التالیة عند $+\infty$ و

$$e^{x}+x-1$$
 1

$$\frac{-e^x+3}{e^x+2}$$
 5

$$e^{x}-x-4$$
 2

$$\frac{x+2e^x-1}{4x}$$

 $(x-1)e^{-x} + x - 3$ 4

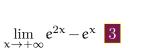
$$\frac{x+2e^x-1}{4x} \quad \boxed{6}$$

 $(x-1)e^{x} + x + 2$ 3

احسب مایلی:

$$\lim_{x \to 0} \frac{2e^x + 3}{e^x - 1}$$

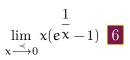
$$\lim_{x \stackrel{\longrightarrow}{\longrightarrow} 0} \frac{2e^x + 3}{e^x - 1} \quad \boxed{2}$$



$$x \to +\infty$$

$$\lim_{x \to \pm \infty} x(e^{\frac{1}{x}} - 1)$$
 4

$$\lim_{\substack{x \to 0 \\ x \to 0}} x(e^{\frac{1}{x}} - 1)$$
 5



نعتبر الدالة العددية f المعرفة على \mathbb{R} بـ : $\frac{4}{e^x+1}: \chi - 1 + \frac{4}{e^x+1}$ تمثيلها البياني في معلم متعامد و متجانس . (O; \overrightarrow{i} ; \overrightarrow{j})

- $+\infty$ أحسب نهايتي الدالة f عند $-\infty$ و عند 1
- استنتج أن المنحني C_f يقبل مستقيمين . $\lim_{x\to -\infty} [f(x)-(x-1)]$ و $\lim_{x\to -\infty} [f(x)-(x+3)]$ يقبل مستقيمين ومقاربين يطلب إعطاء معادلة لكل منهما .

لتكن f الدالة المعرفة على \mathbb{R} بـــ : $\mathbf{c}_f\cdot f(x)=x+e^{-x}$ تمثيلها البياني في مستوي منسوب إلى معلم $\mathbf{c}_f\cdot f(x)=x+e^{-x}$. (O ; \overrightarrow{i} ; \overrightarrow{j})

- $1-\infty$ عيّن نهاية الدالة f عند 1
- $1-\infty$ عيّن نهاية الدالة f عند 2
- بالنسبة C_f بيّن أن المستقيم D_f الذي معادلته y=x هو مستقيم مقارب للمنحني D_f . أدرس وضعية D_f بالنسبة . D بال

. $f(x) = e^{-x} + 2x - 3:$ لتكن f الدالة المعرفة على مجموعة الأعداد الحقيقيقة \mathbb{R} بيا

- 1 (۱) عيّن نهاية الدالة f عند ∞
- . $f(x) \, = \, e^{-x} \, (\, 1 + 2 \, x \, e^x 3 \, e^x \,)$ ، x جقق أنه من أجل كل حقيقي
 - $-\infty$ عيّن نهاية الدالة $_{
 m f}$ عين نهاية الدالة (ج)
- . $C_{
 m f}$ مستقيم مقارب للمنحني ${
 m y}=2{
 m x}-3$ الذي معادلته (D) الذي المستقيم ${
 m y}=2$
 - C_f رب) أدرس الوضعية النسبية للمستقيم بالنسبة إلى المنحنى (ب

 $\mathsf{f}(\mathsf{x}) = \mathsf{x} - 1 + rac{4}{e^{\mathsf{x}} + 1} :$ نعتبر الدالة العددية f المعرفة على \mathbb{R} ب

 $.\mathsf{f}'(\mathsf{x}) = \left(rac{e^{\mathsf{x}}-1}{e^{\mathsf{x}}+1}
ight)^2$ ، x جیّن أنه من أجل کل حقیقي 1

. أدرس اتجاه تغير الدالة $_{
m f}$ ثم شكل جدول تغيراتها $_{
m c}$

لتكن $f(x)=(x+1)^2e^{-x}:$ برمز إلى تمثيلها البياني في معلم $f(x)=(x+1)^2e^{-x}$

- $f'(x) = (1-x^2)e^{-x}$ و بيّن أن f'(x) = f'(x)
- $oxdot{C_f}$ عيّن معادلة $oxdot{T}$ مماس المنحنى $oxdot{C_f}$ عند النقطة ذات الفاصلة $oxdot{T}$
 - $.(\mathsf{T})$ نرید دراسة وضعیة C_{f} بالنسبة إلى المماس 3
- . أحسب k'(x) و استنتج اتجاه تغير الدالة k و إشارتها $k(x)=x+1-e^x$ انضع
 - $igstyle{igstyle igwedge} (au)$ بالنسبة إلى المماس (ب $C_{
 m f}$

احسب مشتق ونهايات الدالة f في كل حالة ممايلي:

$$D_f = \mathbb{R}$$
 $1 - 2x - e^{2x - 2}$ 13

$$D_f = \mathbb{R}$$
 $1 - 2x - e^{2x - 2}$ 13

$$D_f = \mathbb{R} \qquad xe^{2x+2} - x + 1 \quad 14$$

$$D_f = \mathbb{R}$$
 $2x + 3 - (x+1)e^x$ 15

$$D_f = \mathbb{R} \qquad (x-1)e^x - 1 \quad \boxed{16}$$

$$D_f = \mathbb{R} \qquad \frac{e^x - 1}{e^x - x} \quad \boxed{17}$$

$$D_f = \mathbb{R} - 1 \qquad \frac{x}{x - 1} + e^{\frac{1}{x - 1}}$$
 18

$$D_f = \mathbb{R}^*$$
 $\frac{3xe^x - 3x - 4}{3(e^x - 1)}$ 19

$$D_f = \mathbb{R} \qquad x - 1 + \frac{4}{e^x + 1} \quad \boxed{20}$$

$$D_f = \mathbb{R} \qquad (-x-1)e^{-x} + 1 \quad 21$$

$$D_f = \mathbb{R} \qquad x + \frac{2}{1 + e^x} \quad \boxed{22}$$

$$D_f = \mathbb{R}^* \qquad x - \frac{1}{e^x - 1}$$
 23

$$D_f = \mathbb{R}^* \qquad xe^{\frac{1}{x}} \quad 24$$

$$D_f = \mathbb{R} \qquad (2x+1)e^x - 1 \quad \boxed{1}$$

$$D_f = \mathbb{R} \qquad x - (x+1)e^{-x} \quad 2$$

$$D_f = \mathbb{R} \qquad e^x - ex - 1 \quad 3$$

$$D_{f} = \mathbb{R} \qquad \frac{2x+2}{e^{x}+2} \quad \boxed{4}$$

$$D_{f} = \mathbb{R} \qquad \frac{x}{x + e^{-x}} \quad \boxed{5}$$

$$D_f = \mathbb{R} \qquad \frac{e^x + 4x - 1}{e^x + 1} \quad \boxed{6}$$

$$D_{f} = \mathbb{R}$$
 $(2x-4)e^{\frac{1}{2}x} + 2 - x$ 7

$$D_f = \mathbb{R}$$
 $-x + (x^2 + 3x + 2)e^{-x}$ 8

$$D_f = \mathbb{R}$$
 $1 - \frac{1}{2}x - \frac{2}{e^x + 1}$ 9

$$D_f = \mathbb{R}$$
 $\frac{(x+1)e^x + x + 2}{e^x + 1}$ 10

$$D_f = \mathbb{R} \qquad \frac{4e^x + 2}{e^x + 1} \quad \boxed{11}$$

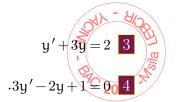
$$D_f = \mathbb{R} \qquad \frac{x^2 e^x}{e^x - x} \quad \boxed{12}$$

$$D_f = \mathbb{R} \qquad (x-2)^2 e^x \quad 26$$

$$D_f = \mathbb{R} \qquad x(1 - e^x)^2 \quad 25$$

ightharpoonup y' = ay + b و m y' = ay المعادلات التفاضلية من الشكل 2

عين الحل العام للمعادلات التفاضلية التالية:



 $.N(0) = N_0$ $,\frac{\partial N(t)}{\partial t} = -\lambda N(t)$ 4

 $i(0) = I_0$ $\frac{\partial i}{\partial t} + \frac{1}{\tau}i = \frac{E}{I}$

$$y' = 2y$$
 1

$$2y' - y = 0 \quad 2$$

$$f(\ln(4)) = 1$$
 $2y' + y = 0$ 1

$$f(ln(4)) = 1$$
 $2y' + y = 0$ 1

$$f(0) = 1$$
 , $y' - 3y = 0$ 2

$$y - 3y = 0$$

$$f(-1) = 2$$
 $y' + y = 1$ 3

- y'-2y=2x+1....(01): نعتبر المعادلة التفاضلية
 - (01) اوجد دالة تألفية f تكون حلا للمعادلة التفاضلية (01)
- y'-2y=1بوضع y=z+f بين أنه إذا كان y حل للمعادلة التفاضلية z فإن z حل للمعادلة التفاضلية y'-2y=1.0....(02)
 - (01) عنئذ المعادلة التفاضلية (02) ثم استنتج الحل العام للمعادلة التفاضلية (01)

- $y' + 2y = 3e^{-3x}$ نعتبر المعادلة التفاضلية (01) نعتبر المعادلة التفاضلية
- zبوضع $y=z-3e^{-3x}$ ، اوجد المعادلة التفاضلية ($y=z-3e^{-3x}$

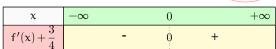
- .(01) خل المعادلة التفاضلية (02). ثم استنتج حل للمعادلة التفاضلية 3
 - .f(0) = $rac{3}{2}$ عين الحل f للمعادلة f والذي يحقق f
 - $f(x) = 3e^{-2x}(rac{3}{2} e^{-x}):$ تحقق أن الدالة f تكتب على الشكل
- . ادرس تغيرات الدالة $_{
 m f}$ ثم عين احداثيات نقط تقاطع $_{
 m f}$ مع محوري الاحداثيات.
 - (C_f) احسب f(1) ثم ارسم المنحنى f

نماذج بكالوريا 🗲

1

بكالوريا تونس 2014

- $f(x)=rac{e^{-x}}{e^x+1}$ الدالة العددية المعرفة على $\mathbb R$ بالدالة العددية المعرفة على f
- $.(O;\overrightarrow{i};\overrightarrow{j})$ منحناها البياني في معلم متعامد ومتجانس (C_f
- احسب $\lim_{x o -\infty} \mathsf{f}(x)$ و $\lim_{x o -\infty} \mathsf{f}(x)$ وفسر النتيجة الأولى بيانور
- $\chi(x) = -\frac{(2 + e^{-x})}{(e^x + 1)^2}$ بین أنه من أجل کل عدد حقیقي χ لدینا: $\chi(x) = \frac{(2 + e^{-x})}{(e^x + 1)^2}$

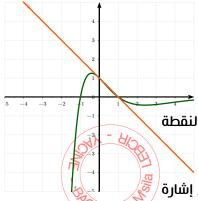


- استنتج اتجاه تغير الدالة $_{
 m f}$ ثم شكل جدولا لتغيراتها.
 - ا) عين معادلة ل(T) المماس ل (C_f) عند النقطة ذات الفاصلة (C_f)
 - حدد (ب) باستخدام جدول الاشارة التالي حدد (T) و (C_f)
 - $.iggl[-rac{1}{2};+\inftyiggl[$ ارسم (T) و (C_{f}) على المجال 5

المستوى المنسوب إلى معلم متعامد ومتجانس $\cdot (0; \overrightarrow{i}, \overrightarrow{j})$

- g الشكل المقابل هو (C_{q}) منحن الدالة ه
 - $g(x) = (1 + ax^2)e^{bx}$ المعرفة على \mathbb{R} ب:

بقراءة بيانية:



- .g'(0) و g(0) g(-1) احسب g'(0)
- عند النقطة (C_q) عند النقطة 2ذات الفاصلة 0.
- حل المعادلة $g(\mathbf{x}) = 0$ وشكل جدول إشارة 3ا**لدالة** g.
- 4 بالاستعانة بالمعطيات السابقة تحقق أن :
- $\cdot g(x) = (1-x^2) \mathrm{e}^{-x}$. والمعلم السابق. $(C_f) \cdot f(x) = (x+1)^2 \mathrm{e}^{-x}$ ب دالة معرفة على $\mathbb R$ ب بنائي في المعلم السابق.
 - احسب $\lim_{x \to +\infty} f(x)$. ثم اثبت أن $\lim_{x \to +\infty} f(x)$ احسب 1
 - f'(x) = g(x) بین أنه من اجل کل عدد حقیقی x لدینا: 2
 - استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها. 3
 - عين دون حساب $\frac{f(x)-1}{x}$ ثم فسر النتيجة هندسيا.
 - (C_f) للمنحنى النقطة ذات الفاصلة (T) للمنحنى النقطة ذات الفاصلة (T_f)
 - $[-2; +\infty[$ على المجال (C_f) و (T) على الشجال 6
- f(x) = -m ناقش بيانيا حسب قيم الوسيط الحقيقى m عدد واشارة حلول المعادلة $oldsymbol{7}$
 - $k(x) = f(x^2) 1$ دالة معرفة على \mathbb{R} ب k
 - ادرس تغيرات الدال**ة** k. <u>9</u>

gنعتبر الدالة g المعرفة على \mathbb{R} ب:g بالدالة و

- $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to +\infty} g(x)$ احسب ا
- ادرس اتجاه تغير الدالة g وشكل جدول تغيراتها. 2

 $g(\mathbf{x})$ احسب g(0) وحدد اشارة

نعتبر الدالة f المعرفة على $[-\infty;1]$ ب: $[-\infty;1]$ بنداله f المعرفة على $[-\infty;1]$ بنداله $[-\infty;1]$ نعتبر الدالة $[-\infty;1]$ المعرفة على $[-\infty;1]$ بنداله $[-\infty;1]$ المعرفة على المعرفة على أخرى المعرفة على أخرى الدائة $[-\infty;1]$ المعرفة على الدائة $[-\infty;1]$ المعرفة على الدائة $[-\infty;1]$ المعرفة على الدائة الدائة

- $\lim_{x \to -\infty} f(x)$ احسب
- $_{\mathrm{U}}$ بين أن المستقيم $_{\mathrm{U}}(\Delta)$ ذي المعادلة $_{\mathrm{U}}$ مستقيم مقارب ل
 - $.(\Delta)$ ادرس وضعية (C_{f}) بالنسبة ل
- $f'(x)=(e^x=-1).g(x)$ بين أنه من أجل كل عدد حقيقي x من المجال x من المجال المجال x
 - استنتج اشارة $\mathrm{f}'(\mathrm{x})$ ثم شكل جدول تغيراتها. 5
 - اثبت أن المنحنى $(C_{
 m f})$ يقبل نقطة انعطاف ω يطلب تعيين احداثياتها. 6
 - -1 المماس ل (C_{f}) عند النقطة ذات الفاصلة ر (T)
 - (C_f) و (T) ، (Δ) انشئ (Δ)

 $. h(x) = x. (1 - e^{|x|})^2$ ب: [-1;1] بالدالة المعرفة على h

- ادرس قابلية اشتقاق الدالة h عند الصفر. واذا تستنتج؟.
- بین ان ${\mathfrak h}$ دالة فردیة. ثم استنتج طریقة لرسم منحناها دون دراسة تغیراتها. 2
 - . انشئ منحن الدالة h في نفس المعلم السابق 3

 $.\mathsf{f}(\mathsf{x}) = \mathsf{x}.\mathsf{e}^{\dfrac{1}{\mathsf{x}}}$ دالة معرفة على \mathbb{R}^* كما يلي: f

- $\lim_{x \to +\infty} f(x) \mathbf{9} \lim_{x \to -\infty} f(x) \mathbf{1}$
- . $\lim_{x \stackrel{\succ}{\longrightarrow} 0} f(x)$ وفسر النتيجتين هندسيا $\lim_{x \stackrel{\sim}{\longrightarrow} 0} f(x)$
- $\log t = 1$ برمن أن $\log t = 1$. $\lim_{|x| \to +\infty} x \cdot \left(e^{\frac{1}{x}} 1\right) = 1$. (ا) برمن أن
- $\cdot + \infty$ بجوار O_f) بجوار O_f استنتج أن المستقيم O_f ذي المعادلة O_f مقارب مائل ل
 - $_{
 m .f}$ احسب $_{
 m f}'(x)$. ثم شكل جدول تغيرات الدالة $_{
 m f}$
 - .(C_f) ارسم

 $g(x)=f(x^2):$ و الدالة المعرفة على \mathbb{R}^* بg الدرس تغيرات الدالة g

 $(0,\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}})$ دالة معرفة بالعبارة : $g(x)=2x-1-e^{-x}$ تمثيلها البياني في معلم متعامد ومتجانس g

- \mathbb{R} على \mathbf{g} أدرس تغيرات الدالة \mathbf{g}
- $+\infty$ عند $(C_{
 m g})$ عند مقارب مائل للمنحنى و y=2x-1 عند y=2x-1
 - 0,73 تقبل حلا وحيدا α حيث $g(\mathbf{x})=0$ تقبل حلا وحيدا $g(\mathbf{x})=0$
 - $g(\mathbf{x})$ إستنتج إشارة 4
 - (C_a) أنشئ المنحنى [5]

 ${\sf f}({\sf x}) = 4{\sf x}^3 - 3{\sf x}^2 + 6({\sf x}+1){\it e}^{-{\sf x}}\,:$ دالة معرفة على ${\sf R}$ كما يلي f

- f'(x) = 6xg(x):بین أنه من أجل كل x من x فإن 1
 - $\mathbb R$ على f'(x) على $\mathbf 2$
- $\int \lim_{x \to -\infty} f(x)$ أحسب أ $\lim_{x \to -\infty} f(x)$ ، أحسب أ $\lim_{x \to +\infty} f(x)$ ثم شكل جدول تغيرات الدالة
 - $f(\alpha) = 4\alpha^3 + 9\alpha^2 + 6\alpha 6$ بین أن

 $f(x)=1+rac{1}{2}x-rac{2}{e^x+1}:$ لتكن الدالة f المعرفة على \mathbb{R} كما يلي \mathbb{R} كما يلي الكن $f(x)=1+rac{1}{2}x-rac{2}{e^x+1}:$ وليكن $f(x)=1+rac{1}{2}x-rac{2}{e^x+1}:$ وليكن $f(x)=1+rac{1}{2}x-rac{2}{e^x+1}:$ كما يلي أن المستوي المنسوب إلى معلم متعامد ومتجانس $f(x)=1+rac{1}{2}x-rac{2}{e^x+1}:$

- $\frac{1}{e^{-x}+1}=1-rac{1}{e^x+1}:$ تحقق أنه من أجل كل عدد حقيقي (۱) 1
- (C_f) رب) برهن أنه من أجل كل $x \in \mathbb{R}$ لدينا $x \in \mathbb{R}$ ما ذا تستنتج بالنسبة للمنحنى (ب
 - $(-\infty)$ و $(+\infty)$ عند f أحسب نهايات الدالة
 - أدرس اتجاه تغير الدالة $_{
 m f}$ وشكل جدول تغيراتها $_{
 m I}$
 - بين أن للمنحنى (C_{f}) نقطة انعطاف يطلب تعيين احداثياتها 4
 - $1-rac{2}{e^{\mathrm{x}}+1}$ استنتج أنه من أجل كل $\mathrm{x}\in\mathbb{R}$ لدينا $\mathrm{x}\in\mathbb{R}$

- أحسب $\lim_{x \to +\infty} \left[f(x) 1 + \frac{1}{2} x \right]$ أحسب أحسب أحسب أحسب أ
 - (C_f) أنشىء المنحنى [7

 $g(x) = 1 - xe^x$: و دالة معرفة بالعبارة $g(x) = 1 - xe^x$

- g أدرس تغيرات الدالة
- $\alpha\in]0,5;0,6[$ يحقق α يحقق عقبل حلا وحيدا α يحقق g(x)=0
 - $g(\mathbf{x})$ استنتج إشارة

لتكن الدالة f المعرفة على \mathbb{R} كما يلي $\frac{1+x}{e^x+1}:$ ين الدالة f المعرفة على \mathbb{R} كما يلي f كما يلي المستوي المنسوب إلى معلم متعامد ومتجانس f وليكن f

- $f(x) = x + 1 \frac{(1+x)e^x}{e^x + 1} : x$ بین أنه من أجل کل عدد حقیقي
 - g أدرس تغيرات الدالة f بالإستعانة بالدالة $\overline{2}$
 - عين المستقيمات المقاربة للمنحنى (C_f) ، ثم أنشئه.

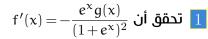
 $f(x)=rac{e^x}{e^x+1}:$ لتكن الدالة f المعرفة على $\mathbb R$ كما يلي $\mathbb R$ كما يلي الكن الدالة f المعرفة على $\mathbb R$ كما يلي على المستوي المنسوب إلى معلم متعامد ومتجانس (C_f)

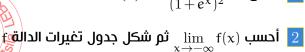
- f أدرس تغيرات الدالة
- (C_{f}) بين أن النقطة $\mathrm{A} ig(0; rac{1}{2}ig)$ مركز تناظر للمنحنى
- A عند النقطة ($C_{
 m f}$) عند النقطة (T) عند النقطة 3
- $g(x) = rac{1}{4}x + rac{1}{2} f(x):$ لتكن الدالة g المعرفة على $\mathbb R$ بالعلاقة 4
 - $g'(x)=rac{(e^x-1)^2}{4(1+e^x)^2}:$ ابین أنه من أجل x من x من (۱)
 - (ب) استنتج جدول تغيرات الدالة g وشكل جدول تغيراتها.
 - \mathbb{R} استنتج إشارة g(x) على المجموعة (ج)
- (C_{f}) استنتج الوضعية النسبية لـ (C_{f}) والمماس (T) ماذا تمثل النقطة A بالنسبة إلى (c)
 - $(C_{\rm f})$ أرسم المماس (T) والمنحنى أ

$$\mathbf{g}(\mathbf{x}) = \mathbf{x} - \mathbf{e}^{-\mathbf{x}}:$$
و دالة معرفة على $[-\infty,4]$ بالعبارة \mathbf{g}

- $lpha\in\left]rac{1}{2};1\right[$: شکل جدول تغیرات الدالة g ثم بین أن المعادلة g تقبل حلا وحیدا g تقبل حلا وحیدا g
 - $]-\infty,4]$ على g(x) على 2

 $f(x)=rac{1+x}{1+e^x}:$ لتكن الدالة f المعرفة على $f(x)=-\infty;4$ كما يلي $f(x)=-\infty;4$ كما يلكن الدالة f(x)=0 تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس f(x)=0





- $f(\alpha) = \alpha$ أثبت أن
- (C_f) نقبل أن المستقيم y = x + 1 مقارب لـ (۱) 4
- (C_f) أدرس الوضع النسبى بين (C_f) و (Δ) ، ثم أنشىء المنحنى (ب)

$${\sf f}({\sf x}) = -{\sf x} - rac{1-5e^{\sf x}}{e^{\sf x}}:$$
ادالة عددية معرفة على ${\sf f}$

- $\lim_{x \to +\infty} f(x)$ أحسب 1
- $f(x) = 5 x ae^{-x}$: عين العدد الحقيقي a حيث عين العدد 2
 - (Δ) بین أن (C) یقبل مستقیما مقاربا مائلا 3
 - (Δ) و (C) أدرس الوضع النسبى بين (C)
 - f شكل جدول تغيرات الدالة 5
- بین أن المعادلة $\mathbf{f}(\mathbf{x})=0$ تقبل حلین \mathbf{a} و \mathbf{a} حیث $\mathbf{g}=0$ حیث أن المعادلة $\mathbf{g}=0$ بین أن المعادلة و مسلمانیا بین المعادلات و مسلمانیا بین المعادلات و مسلمانیا بین المعادلات و مسلمانیا بین المعادلات و مسلمانی
 - 7 أنشيء المنحني (C).
 - f(x) = 3 m ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد حلول المعادلة lacksquare
 - g(x) = |f(x)| المنحنى الممثل للدالة (C') أنشيء المرثل المثل المرثل الدالة (C')

 $f(x) = \frac{2e^x}{e^x - 1} :$ دالة معرفة على $\mathbb{R} - \{0\}$ بـ خ

- f أدرس تغيرات الدالة
- بین أن (C_f) یقبل ثلاث مستقیمات مقاربة $\mathbf{2}$
- (C_f) بین أن A(0;1) مرکز تناظر، ثم أنشئ
- $g(x)=rac{2e^x}{|e^x-1|}$ و دالة عددية حيث $g(x)=rac{1}{|e^x-1|}$ ثم استنتج رسم g(x) انطلاقا من g(x)
- $(\mathfrak{m}-3)|e^{\mathsf{x}}-1|=2e^{\mathsf{x}}:$ ناقش بيانيا حسب قيم الوسي الحقيقي \mathfrak{m} عدم والشارة الحلول المعادلة \mathfrak{m}

. $g\left(x\right)=\left(x+3\right)e^{x}-1$ الدالة العددية المعرفة على \mathbb{R} ب الدالة العددية المعرفة على \mathbb{R}

- $\lim_{x \to +\infty} g(x)$ ا حسب (۱) احسب (۱) احسب السب
- g' احسب احسب g' مشتق الدالة، وأم استنتج تغيرات g'
 - g (ج) شکل جدول تغیرات
- $lpha\in]-4;0[:$ بين أنّ المعادلة: $g\left(x
 ight) =0$ تقبل حلا وحيدا lpha حيث (۱) 2
 - $(\mathbf{p}(\mathbf{x})$ استنتج حسب قیم \mathbf{x} إشارة (ب)

لتكن الدالة المعرفة على \mathbb{R} بـ: \mathbb{R} بـ: \mathbb{R} بـ: \mathbb{R} و منحناها البياني في مستو منسوب إلى معلم لتكن الدالة المعرفة على \mathbb{R} بـ: \mathbb{R} متعامد \mathbb{R} متعامد (o, \overrightarrow{i} ; \overrightarrow{j})

 (c_f) الذي معادلتهy=-xهو مستقيم مقارب للمنحنى المستقيم الخي معادلته y=-xاحسب المنحنى المنحنى $\int_{x\to-\infty}^{\infty} f(x) f(x)$ بجوار $x\to-\infty$

L(D)ادرس وضعية $L(c_{\mathrm{f}})$ بالنسبة لـ

- . $f(x)=e^x\left(rac{-x}{e^x}+(x+2)
 ight):x\in\mathbb{R}$ بین أنه من أجل کل (
 - $\lim_{x \to +\infty} f(x)$ عین (۱)
 - . f'(x) = g(x): $x \in \mathbb{R}$ رب) تحقق أنّه من أجل كل
 - (ج) شڪل جدول تغيرات_f .
- . 0مند معادلة المماس (T) للمنحنى النقطة ذات الفاصلة (C_f)

- . $f(\alpha)$ بين أنّ: $f(\alpha) = 1 \alpha \frac{1}{\alpha + 3}$ ثم استنتج حصرا للعدد
 - . (c_f) و(T)،(D) ارسم

. $g(x) = -1 + (-x+3)e^{-x+2}$ جن \mathbb{R} جن معرفة على g

- . ادرس اتجاه تغيرات g .ثم شكل جدول تغيراتها $oldsymbol{1}$
- . \mathbb{R} من x من عدد حقیقی g(x) من أجل كل عدد حقیقی g(x) من . g(2)

لتكن الدالة f المعرفة على \mathbb{R} كما يلي $\mathbf{f}(x-2)e^{-x+3}$ المعرفة على \mathbb{R} كما يلي \mathbb{R} كما يلي $\mathbf{f}(x-2)e^{-x+3}$ وليكن $\mathbf{f}(x-2)e^{-x+2}$ منتواها البياني في مستو منسوب إلى معلم متعامد ومتجانس $\mathbf{f}(x)$

- . $\lim_{x \to +\infty} f(x)$ و المسب (۱) احسب (۱) احسب (۱) ا
- $f'(x)=g(x):\mathbb{R}$ من x من أجل كل عدد حقيقي f'(x) من f'(x)
 - (ج) شكل جدول تغيرات f.
- يين أنّ المستقيم (C_f) دُوالمعادلة:y=-x+3هو مستقيم مقارب مائل للمنحنی (C_f).ثم حدد وضعية (C_f) بالنسبة لـ (C_f)
 - . اثبت أنّ المنحنى $(\mathsf{C}_{\mathsf{f}})$ يقبل نقطة انعطاف I يطلب تعيين احداثياها 3
- $3\prec eta \prec 4$ و $1\prec lpha \prec rac{3}{2}$: بين أنّ المنحنى (C_f) يقطع محور الفواصل في نقطتين فاصلا تهما lpha
 - \cdot (C_f) ارسم کل من (Δ) و 5
- $m-3+2e^{-x+2}=:$ ناقش بيانيا وذلك حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة $\cdots (-1+e^{-x+2})x$
 - . $h(x) = (|x|-2) e^{-|x|+2} + 3 |x| :$ دالة عددية حيث h
 - (ا) بين أنّ h دالة زوجية .
- با أشرح كيف يمكن رسم المنحنى الممثل للدالة h انطلاقا من المنحنى (C_f) .ثم ارسمه في نفس المعلم و (ب) بلون مختلف.

 $\mathbf{g}\left(\mathbf{x}
ight)=1-\mathbf{x}+\mathbf{e}^{-\mathbf{x}}$ دالة عددية للمتغير الحقيقي \mathbf{x} معرفة على \mathbf{g}

- ادرس تغيرات g ثم شكل جدول تغيراتها (لا يطلب حساب النهايات)
- $1,27\prec lpha\prec 1,28$ بين أنه المعادلة $g\left(x
 ight) =0$ تقبل حلا واحدا lpha حيث 2
 - \mathbb{R} ادرس إشارة g(x) على 3

.f (x) = (2-x) (e^x-1) :غمر الدالة f المعرفة على \mathbb{R} كما يلي

- $\lim_{x \to +\infty} f(x)$ و ا $\lim_{x \to +\infty} f(x)$ أحسب أ
- $f'(x) = e^x g(x) : x$ وبين أن من أجل كل عدد حقيقى $f'(x) = e^x g(x) : x$ أحسب (۱)
- \cdot f (α) بين أن $f(\alpha)=\frac{(2-\alpha)^2}{\alpha-1}$ ثم عين قيمة مقربة إلى $f(\alpha)=\frac{(2-\alpha)^2}{\alpha-1}$ (ب)
 - (ج) شكل جدول تغيرات الدالةf.
- $-\infty$ الذي معادلته y=x-2 مقارب للمنحني (C) في جوار (D) الذي معادلته y=x-2
 - (ب**)** ادرس الوضعية النسبية لـ(D)و(C).
 - له. معادلة له. (C) يطلب تعيين معادلة له. (Δ) لمنحني معادلة له. 4
 - (l) أ- عين إحداثيات نقط تقاطع المنحني (C) مع محور الفواصل.
 - (C)و المنحني (D)، (Δ) و المنحني ().
- $(2-x)(e^x-1)-x=$ وسيط حقيقي.ناقش حسب قيم $\mathfrak m$ عدد حلول المعادلة ذات المجمول $\mathfrak m$ التالية: $\mathfrak m$
 - h المعرفة على \mathbb{R} كما يلي: $\left(e^{x^2}-1\right)$ نعتبر الدالة المعرفة على \mathbb{R} كما يلي: $\mathbf{7}$
 - (I) بين أن h هي مركب الدالة f متبوعة بدالة مرجعية يطلب تعيينها.
 - (ب) استنتج تغيرات الدالة h دون دراستها ثم شكل جدول تغيراتها.

ويمريخ

نعتبر الدالة $f(x)=-1+rac{x-1}{x+1}\,e^x:$ ب $=-1+rac{x-1}{x+1}\,e^x:$ بياني في مستو نعتبر الدالة (C_f) منحناها البياني في مستو منسوب إلى معلم متعامد ومتجانس (C_f) بياني في مستوب إلى معلم متعامد ومتجانس (C_f)

- 1 أحسب نهايات_t عند حدود مجموعة تعريفها.
- . وَانَ مِن أَجِل كل $\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{x}^2+1}{(\mathbf{x}+1)^2} \mathbf{e}^{\mathbf{x}}$ فإنٌ $\mathbf{x} \in \mathbb{R} \{-1\}$ ثم استنتج اتجاه تغيرات (۱) ييّن أنّه من أجل كل
 - (ب) شكل جدول تغيراتf.
- $1.5 \prec lpha \prec 1.6:$ ن و أنّ f(x)=0 تقبل حلا وحيداlpha في المجال f(x)=0 أنّ f(x)=0

- \cdot f(-lpha)=0 أنّ و $e^lpha=rac{lpha+1}{lpha-1}:$ بناكد أنّ
- . (-1) للمنحنى (C_{f}) عند النقطة التي ترتيبها (ح) (ج)
 - (C_{f}) أرسم المماس (T) و المنحنى 4
- . $\frac{x-1}{x+1}e^x=m$ وسيط حقيقي ، ناقش بيانيا حسب قيم الوسيط m عدد وإشارة حلول المعادلة : m

المعرفة على \P بالعبارة: \mathbf{f}_{m}

$$f_{\mathbf{m}}(\mathbf{x}) = (\mathbf{x}^2 + \mathbf{m}\mathbf{x} + 1)\mathbf{e}^{-\mathbf{x}} \qquad \mathbf{m} \in \mathbb{R}^3$$

 $O; \overrightarrow{\mathfrak{i}}, \overrightarrow{\mathfrak{j}}$ نسمي $(C_{\mathfrak{m}})$ تمثيلها البياني في مستو منسوب إلى معام متعامد ومتجانس

- (۱) بین أن جمیع المنحنیات $(C_{\mathfrak{m}})$ تشمل نقطة ثابتة یطلب تعیین احداثیاتها.
 - (ب) برهن أن المنحني $(C_{\mathfrak{m}})$ يقبل قيمتين حديتين يطلب تعيين فاصلتاهما.
 - $\Omega_{\mathfrak{m}}(1-\mathfrak{m}; f_{\mathfrak{m}}(1-\mathfrak{m}))$ حيث $\Omega_{\mathfrak{m}}$ النقط $\Omega_{\mathfrak{m}}$ النقط
 - m=1 نضع
 - $\lim_{x\longrightarrow +\infty} x^2 e^{-x} = 0$ برهن أن (۱)
 - $.\mathsf{f}_1$ ادرس تغيرات الدالة $.\mathsf{f}_1$
 - -1 المماس ل (\mathcal{C}_1) عند النقطة ذات الفاصلة (ح) اكتب معادلة ل
 - $.(C_1)$ و (T) و رد) ارسم کل من
 - g نعتبر الدالة g المعرفة على $\mathbb R$ ب g المعرفة على g
 - (l) ادرس تغيرات الدال**ة** g.
 - (C_q) ادرس وضعية (C_1) بالنسبة ل
 - (C_g) ارسم في نفس المعلم السابق (ج)

الجزء الأول:

 $\mathbf{y}'-2\mathbf{y}=2(\mathbf{e}^{2\mathbf{x}}-1)$ لتكن (E) المعادلة التفاضلية المعرفة على (E

 h حل للمعادلة التفاضلية (E) بين أن الدالة h المعرفة على \mathbb{R} ب h بالمعادلة التفاضلية h

- y=z+h بوضع y'-2y=0 بين أن y حل لy' إذا وفقط إذا كانت z هي حل للمعادلة التفاضلية (E) المعرفة كما يلى y'-2y=0
 - (E) حل المعادلة (E') ثم عين حلول المعادلة 3
 - الذي ينعدم عند (E) الذي ينعدم عند و الحل الخاص ل

الجزء الثاني:

 $g(x) = (2x-1)e^{2x} + 1$ لتكن g المعرفة على $\mathbb R$ ب $\mathbb R$

- أدرس تغيرات الدالة g وشكل جدولا لتغيراتها.
 - 2 عين إشارة g على ℝ.
 - $.1-g(\mathbf{x})\geqslant 0$ حل في $\mathbb R$ المتراجحة (۱) 3
 - (ب) فسر هندسيا النتيجة السابقة.

الجزء الثالث:

 \mathbb{R}^* نعرف على \mathbb{R}^* الدالة \mathbf{f} كمايلي:

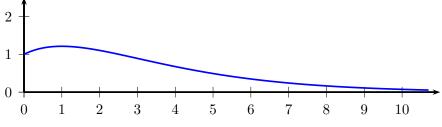
$$f(x) = \frac{e^{2x} - 1}{x}$$

- احسب نهایات الدالة $_{
 m f}$ عند أطراف مجموعة تعریفها. $_{
 m 1}$
- استنتج أن منحني الدالة $_{
 m f}$ يقبل مستقيما مقاربا يطلب تعيينه.
 - ادرس تغيرات الدالة $_{
 m f}$ وشكل جدولا لتغيراتها.

 $f(x)=(ax+b)e^{-rac{1}{2}x},$ الجزء الأول لتكن الدالة f المعرفة على المجال f بايا بالمجال أبيا المعرفة على المجال أبيا المعرفة على المجال المحال المح

حيث a و معددان حقيقيان. نقبل أن f قابلة للاشتقاق على المجال $[0\;;\;+\infty[$ ولتكن f' دالتها المشتقة.

.يعطى منحناها البياني \mathscr{C}_{f} في الشكل الموالي



- . f'(1) عين قيمة ڪل من f(0) و 1
- \cdot بین أنه من اجل کل عدد حقیقي موجب \cdot بر رائه من اجل کل عدد حقیقي موجب \cdot بر انه من اجل کا عدد حقیقي \cdot

3 حدد عندئذ قیمتی a و b

الجزء الثاني

في باقي التمرين نعتبر الدالة f المعرفة على $[0 \; ; \; +\infty [$ ب:

$$f(x) = (x+1)e^{-\frac{1}{2}x}$$
.

- $f(x)=2\left(rac{rac{1}{2}x}{e^{rac{1}{2}x}}
 ight)+e^{-rac{1}{2}x}$, $f(x)=2\left(rac{rac{1}{2}x}{e^{rac{1}{2}x}}
 ight)+e^{-rac{1}{2}x}$, را) برر أنه من أجل كل عدد حقيقي موجب
 - $+\infty$ احسب نهاية الدالة f عند $+\infty$
 - ادرس تغيرات الدالة f على المجال $0 \; ; \; +\infty$ وشكل جدولا لتغيراتها. 2
 - $[0\;;\;+\infty]$ بين أن المعادلة f(x)=0.07 تقبل حلا وحيدا lpha المجال lpha
 - lpha اعط قيمة مقربة للوحدة ل 4

لتكن الدالة f_k المعرفة على \mathbb{R} حيث: $f_k(x)=x+rac{1-ke^{2x}}{1+ke^{2x}}$ عدد حقيقي موجب تماما. نسمى (C_k) تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس $(O; \vec{u}, \vec{v})$. وحدة الطول هي .2cm

- $-+\infty$ احسب نهایتی الدالة f_k عند کل من $-\infty$ و
- $\mathbf{y}' = (\mathbf{y} \mathbf{x})^2$ تحقق أن الدالة \mathbf{f}_k هي حل للمعادلة التفاضلية: (۱) $\mathbf{2}$
- (ب) بين الدالة المشتقة f_k' تنعدم من أجل عدد حقيقي وحيد a_k يطلب تعيينه.
 - (ج) عين اتجاه تغير الدالة f_k وشكل جدولا لتغيراتها.
 - α_k لتكن A_k ذات الفاصة 3
 - A_k احسب ترتيبة النقطة (۱)
 - (C_k) بين أن A_k نقطة انعطاف للمنحنى (C_k)
- (4) بين أن النقط A_k تنتمي إلى نفس المستقيم عندما يمسح k المجال $[0;+\infty[$
 - على الشكلين التاليين: يمكن عدد حقيقى يمكن كتابة $f_k(x)$ على الشكلين التاليين: (I)

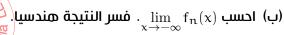
$$f_k(x) = x + 1 - \frac{2ke^{2x}}{1 + ke^{2x}}$$
 $f_k(x) = x - 1 + \frac{2}{1 + ke^{2x}}$

- (ب) استنتج أن (C_k) يقبل مستقيمين مقاربين مائلين (Δ_1) و (Δ_1) يطلب تعيين معادلة لهما
 - (Δ_2) و(م) ادرس وضعية (C_k) بالنسبة لكل من (ج)
 - 0.5 بين أنه توجد نقطة وحيدة من $(C_{\mathbf{k}})$ يكون فيها معامل توجيه المماس يساوي
 - عين قيمة k حتى يمر (C_k) من المبدأ.
 - $.(C_3)$ و $.(C_1)$ أنشئ في نفس المعلم $.(C_1)$ انشئ في نفس المعلم 7

- الدالة العددية المعرفة على \mathbb{R} بي الدالة العددية المعرفة على \mathbb{R} بي الدالة f_k الدالة العددية المعرفة على \mathbb{R} بي العالم المتعامد و المتجانس \mathbb{R} في المستوى المنسوب إلى المعلم المتعامد و المتجانس \mathbb{R} في المستوى المنسوب إلى المعلم المتعامد و المتجانس \mathbb{R} في المستوى المنسوب إلى المعلم المتعامد و المتجانس \mathbb{R}
 - . من نقطتین ثابتتین یطلب تعیینهما $(\mathscr{C}_{\mathbf{k}})$ تمر من نقطتین ثابتتین یطلب تعیینهما1
 - . (K فامر نهايتي الدالة $f_{
 m K}$ عند $-\infty$ و $-\infty$ ، \cdot . \cdot ناقش حسب قيم الوسيط الحقيقي 1
 - . f_k ثم حدّد حسب قيم الوسيط الحقيقي K إتجاه تغير الدالة ، $f_k'(x)$. ثم حدّد حسب قيم الوسيط الحقيقي موجب تماما . ثمّ خدول تغيرات الدالة f_k من أجل K عدد حقيقي موجب تماما .
 - $.(\mathscr{C}_{k+1})$ و (\mathscr{C}_k) ناقش حسب قيم الوسيط الحقيقى K الأوضاع النسبية للمنحنيين و 4
 - $f(x)=(x+1)^2e^{-2x}$ الدالة المعرفة على \mathbb{R} بن \mathbb{R} بن \mathbb{R} الدالة المعرفة على \mathbb{R} بنسمي \mathbb{R} تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس \mathbb{R}
 - . $\left[-rac{3}{2};+\infty
 ight[$ شكل جدول تغيرات الدالة $_{\mathrm{f}}$ ، ثم أرسم المنحنى (\mathscr{C}_{f}) على المجال 1
 - $1,28 \prec lpha \prec -1,27:$ أ بيّن أنّ المعادلة f(x)=1 تقبل حلّين في f(x)=1 أحدهما f(x)=1 أن المعادلة (أ يتن أنّ المعادلة f(x)=1 عيّن قيم العدد الحقيقي f(x)=1 التي من أجلها تقبل المعادلة f(x)=1 حلا وحيدا (ب
 - $g(x)+(x+1)e^{-2x}$ بالدالة المعرّفة على ${\mathbb R}$ بـ ${\mathbb R}$
- ا) بیّن أنّه من أجل کل عدد حقیقي x فإن: $g'(x) + 2g(x) e^{-2x} = 0$ ثم إستنتج دالة أصلية لـ g على . \mathbb{R}
- ب) بإستعمال المكاملة بالتجزئة ، أحسب A مساحة الحيز المستوي المحدّد بالمنحنى $(\mathscr{C}_{\mathbf{f}})$ ومحور الفواصل و المستقيمين اللّذين معادلتاهما $\mathbf{x}=0$ و $\mathbf{x}=-1$

. معدد طبيعي غير معدوم. $g_n(x)=n(x+1)+e^x$ عدد طبيعي غير معدوم الدالة العددية المعرفة على g_n

- ادرس تغيرات g_{n} ثم شكل جدولا لتغيراتها.
- $-2\preclpha_n\prec-1$ نم تحقق أن $lpha_n\prec-1$ تقبل في lpha حلا وحيدا $lpha_n$ ثم تحقق أن $g_n(x)=0$
 - $g_{\mathbf{n}}(\mathbf{x})$ استنتج حسب قیم \mathbf{x} إشارة
- $f_n(x)=rac{xe^x}{n+e^x}$:عما يلي ڪما يلي المعرفة على f_n المعرفة على f_n المعرفة على (II) وليكن (C_n) تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس
 - . بين أن جميع المنحنيات (c_n) تشمل نقطة وحيدة يطلب تعيينها $oldsymbol{1}$
 - $\lim_{x \to +\infty} f_n(x)$ احسب (۱) 2



- ا احسب $f_n(x) x$ ماذا تستنتج؛ السب احسب $f_n(x)$
- y=x ادرس الوضع النسبي بين (C_n) والمستقيم (Δ) ذي المعادلة (ب
 - $f_n'(x)=rac{e^xg_n(x)}{(n+e^x)^2}$ لاینا: x کی عدد حقیقی x لدینا: (۱) 4
 - (ب) استنتج اتجاه تغير الدالة f_n وشكل جدولا لتغيراتها.
 - $.f_n(\alpha_n) = 1 + \alpha_n$ بین أن: 5
 - (C_{n+1}) ادرس الوضع النسبی بین (C_n)
 - .(C₃) **و**(C₂)،(C₁)،، (Δ) من (Δ) انشئ کل من (Τ

3 بكالوريات جزائرية شعبة علوم تجريبية

بكالوريا 2008 م01

: عمايل المجل $[-2;+\infty[$ كمايلي للمتغير الحقيق المعرفة على المجل $[-2;+\infty[$ كمايلي

جيث \mathbf{a} عددان حقيقيان. $\mathbf{f}(\mathbf{x}) = (\mathbf{a}\mathbf{x} + \mathbf{b})\mathbf{e}^{-\mathbf{x}} + 1$

- $(0;\overrightarrow{i};\overrightarrow{j})$ ى تمثيلها البياني في المستوي المسوب إلى معلم متعامد ومتجانس ((C_f)
- A(-e)عين قيمتي aوطبحيث النقطة A(-1;1)تنمتمي إلى A(-1;1)ومعامل توجيه المماس عند A(-1;1) . g(x)=(-x-1) عين قيمتي g(x)=(-x-1) للمتغير الحقيقيaالمعرفة على المجال aالمعرفة على المحال على المحال
 - . و $(C_{\mathfrak{q}})$ تمثيلها البياني في المعلم السابق

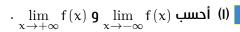
- $\lim_{n\to -\infty} u.e^n = 0$ بين أن $\lim_{n\to -\infty} g(x) = 0$ وفسر النتيجة بيانيا بين أن $\lim_{n\to -\infty} g(x) = 0$
 - ادرس تغيرات الدالةg, ثم أنشئ جدولا لتغيراتها. 2
 - . يين أن المنحنى $(C_{
 m q})$ يثبل نقطة انعطاف ${
 m I}$ يطلب تعيين إحداثياتها ${
 m 3}$
 - . آعتب معادلة المماس للمنحنى (C_a) عند النقطة4
 - .(C_g)نشئ 5

 $\mathbf{k}(\mathbf{x}) = \mathbf{g}(\mathbf{x}^2)$ كمايلى: $[-2; +\infty[$ كمايلى: التكن \mathbf{k} الدالة العددية المعرفة على المجال

—باستخدام مشتق دالة مركبة ادرس اتجاه تغير الدالة المرقو شكل جدولا لتعيراتها.

بكالوريا 2010 م02

 $f(x)=x-rac{1}{e^x-1}:$ نعتبر الدالة العدديةf المعرفة على \mathbb{R}^* كما يلي \mathbb{R}^* كما يلي المعلم المتعامد المتجانس $\left(O;\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}}\right)$ نرمز بـ $\left(C_f\right)$ لتمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس

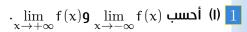


- . و فسر هندسیا النتیجة و $\lim_{x \stackrel{\sim}{\to} 0} f(x)$ و $\lim_{x \stackrel{\succ}{\to} 0} f(x)$ (ب)
- . أدرس إتجاه تعير الدالة f على كل مجال من مجالى تعريفها ثم شكّل جدول تغيراتها 2
- : ييّن أن المنحني (C_f) يقبل مستقيمين مقاربين مائلين (Δ') و (Δ') معادلتيهما على الترتيب y=x+1 و y=x
 - (Δ') و (Δ') و النسبة إلى كل من (Δ')
 - $. \; (C_{\mathrm{f}})$ أثبت أن النقطة $\omega \left(0; rac{1}{2}
 ight)$ هي مركز تناظر للمنحنى ω
 - $1.4 < \beta < -1.3$ و و المعادلة f(x) = 0 تقبل حلّين α و و حيث $1.2 < \alpha < 1$ و المعادلة و المعاد
 - $(oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{(}oldsymbol{(}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{(}oldsymbol{)}oldsymbol{)})$
 - (C_{f}) أرسم (Δ') ، (Δ') ثم المنحنى (ج)
 - $(m-1)e^{-x} = m$: ناقش بیانیا حسب قیم الوسیطmعدد و إشارة حلول المعادلة (د)

بكالوريا 2011 م11

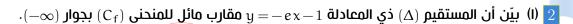
 $f(x) = e^x - ex - 1$ نعتبر الدالة العددية المعرّفة على \mathbb{R} ب

 $\cdot \left(\mathrm{O}\,; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}} \right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(\mathrm{C}_{\mathrm{f}} \right)$

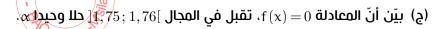


(ب) أحسب
$$f'(x)$$
 ثمّ أدرس إشارتها.

(ج) شكّل جدول تغيرات الدالة f.



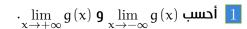
.0 مادلة للمستقيم (T) مماس للمنحني ((C_f) عند رائقطة ذات الفاصلة (ب)



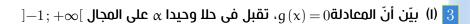
 (C_f) على المجال ((C_f) ثم المنحنى ((C_f) على المجال (عرب) أرسم المستقيمين ((Δ)

بكالوريا 2012 م02

 $g(x) = 1 - xe^x$ الدالة العددية المعرّفة على \mathbb{R} يـ ي



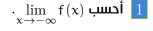
. أدرس اتجاه تغير الدالة $_{
m g}$ ثم شكّل جدول تغيراتها $_{
m c}$



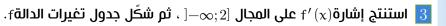
 \mathbb{R} رب) تحقق أنّ q(x) على $0.5 \prec \alpha \prec 0.6$ ، ثم استنتج إشارة (ب

$$f(x)=(x-1)\,e^x-x-1:$$
نعتبر الدالة f المعرفة على المجال $[-\infty;2]$ كما يلي

 $.ig(O;\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)



f'(x) = -g(x):لتكن f' مشتقة الدالةf . بيّن أنه من أجل كل عدد حقيقىxمن f'مشتقة الدالة f'(x) = -g(x)



(اتدوّر النتائج إلى
$$f(\alpha)=-\left(rac{lpha^2+1}{lpha}
ight)$$
 بيّنٌ أنّ $f(lpha)=-\left(rac{lpha^2+1}{lpha}
ight)$ ثم استنتج حصرا للعدد

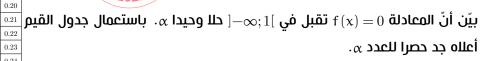
 $-\infty$ بجوار $(C_{
m f})$ ذا المعادلة y=-x-1 هو مستقيم مقارب مائل للمنحنی (Δ) بجوار (۱) (Δ)

 (\mathbf{p}) أدرس وضعية $(\mathbf{C}_{\mathbf{f}})$ بالنسبية إلى ($(\mathbf{C}_{\mathbf{f}})$

- $1.5\prec x_2\prec 1.6$ و $-1.6\prec x_1\prec -1.5$ ديث أنّ المعادلة f(x)=0 تقبل حلّين x_2 و x_2 حيث x_2
 - (ب) أنشئ (∆) و(C_f) .

بكالوريا 2013 م01

- $f(x)=rac{x}{x-1}+e^{rac{1}{x-1}}$ الدالة المعرّفة على $]-\infty;1[$ بي الدالة المعرّفة على f
- $.\left(0;\overrightarrow{i},\overrightarrow{j}
 ight)$ ور(C) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس
 - (C) أحسب $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to 1} f(x)$ ، ثمّ استنتج المستقيمين المقاربين للمنحني المنحني ال
- . بيّن أنّ الدالة $_f$ متناقصة تماما على المُجَلِّ $[-\infty;1[$ أَكُمُ شكّل جدول تغيراتها. $_f$



- أرسم المستقيمين المقاربين والمنحنى (C)، ثمّ أرسم المنحنى (C') الممثل للدالة |f|.
- حلان |f(x)|=m عيّن بيانيا مجموعة قيم الأعداد الحقيقية m التي من أجلها يكون للمعادلة f(x)=m حلان مختلفان في الإشارة.

والدالة المعرّفة على
$$g(x)=f(2x-1)$$
 بـِ: $g(x)=f(2x-1)$ غير مطلوبة $g(x)$

- أدرس تغيّرات الدالة g على $[-\infty;1]$ ، ثمّ شكّل جدول تغيراتها. $oxed{1}$
 - $g'\left(rac{lpha+1}{2}
 ight)=2$ ر (ا) تحقّق أنّ $g\left(rac{lpha+1}{2}
 ight)=0$ ثمّ بيّن أنّ (ا) 2
- $rac{lpha+1}{2}$ بستنتج معادلة (T) المماس لمنحنى الدالة g في النقطة ذات الفاصلة (ب)
 - $y = \frac{2}{(\alpha 1)^3} \chi \frac{\alpha + 1}{(\alpha 1)^3}$ (ج) تحقّق من أنّ : $y = \frac{2}{(\alpha 1)^3} \chi \frac{\alpha + 1}{(\alpha 1)^3}$

بكالوريا 2015 م01

 $\operatorname{q}(\mathbf{x}) = 1 - 2\mathbf{x} - e^{2\mathbf{x} - 2}$ والدالة العددية المعرّفة على $\operatorname{q}(\mathbf{x}) = 1 - 2\mathbf{x} - e^{2\mathbf{x} - 2}$

- ا أدرس إتجاه تغير الدالةgعلى \mathbb{R} .
- $0.36 \prec lpha \prec 0.37$ بيّن أنّ المعادلة $g(\mathbf{x}) = 0$ تقبل حلا وحيدا lpha في \mathfrak{R} ، ثمّ تحقّق أنّ: $g(\mathbf{x}) = 0$
 - \mathbb{R} علی g(x) علی استنتج إشارة

الدالة العددية المعرفة على \mathbb{R} ب المستوي و (C_f) و $f(x)=xe^{2x+2}-x+1:$ على \mathbb{R} ب المستوي في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(O;\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}})$

- $f'(x)=e^{2x+2}g(-x):$ سیّن أنّه من أجل کل x من (۱) 1
- $[-lpha;+\infty[$ و متزايدة تماما على المجال $[-lpha;+\infty[$ و متزايدة تماما على المجال (ب)
 - $-\infty$ أحسب نهاية $+\infty$ و عند $-\infty$ ثم شكل جدول تغيرات الدالة $-\infty$
 - أحسب $\lim_{x \to -\infty} [f(x) + x 1]$ ثمّ فسّر النتيجة هندسيا.
 - $y=\sqrt{\kappa+1}$ أدرس وضعية (C_f) بالنسبة إلى المستقيم (Δ)الذي معادلته (C_f)
 - $f(\mathbf{x}) \approx 0.1$ أنشئ (C_f) على المجال $[-\infty; \frac{1}{2}]$ أنشئ (C_f) على المجال أ

بكالوريا 2016 م02 الدورة الأُولى

 $.g\left(x
ight)=1+\left(x^{2}+x-1
ight)e^{-x}:$ لتكنg الدالة العددية المعرّفة على

- $\lim_{x \to +\infty} g(x)$ ا أحسب $\lim_{x \to -\infty} g(x)$
- . أدرس اتجاه تغيّر الدالة $_{
 m g}$ ، ثم شكّل جدول تغيراتها $_{
 m c}$

 \mathbb{R} ب) استنتج إشارة $g\left(\mathbf{x}
ight)$ على.

نعتبر الدالة f المعرفة على \mathbb{R} كما يلي $e^{-x} + (x^2+3x+2)e^{-x}$ تمثيلها البياني أحتبر الدالة (C_f) . $f(x) = -x + (x^2+3x+2)e^{-x}$ في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O;\overrightarrow{i},\overrightarrow{j})$

- $\lim_{x \to +\infty} f(x)$ ا أحسب $\lim_{x \to +\infty} f(x)$ المسب (۱)
- . f'(x) = -g(x): بیّن أنه من أجل كل عدد حقیقي x فإن
 - (ج) شكّل جدول تغيرات الدالة f على \mathbb{R} . (نأخذ 0.38pprox 0.38
- . این دون حساب : $\lim_{h \to 0} \frac{f(\alpha + h) f(\alpha)}{h}$: ثم فسّر النتیجة هندسیا
- $+\infty$ عند (C_f) فا المعادلة y=-x مقارب مائل للمنحنی (Δ) فا بیّن أنّ المستقیم (Δ)
 - . (Δ) أدرس وضعية المنحنى (C_f) بالنسبية للمستقيم
 - (ج) بيّن أن المنحنى يقبل نقطتي إنعطاف يطلب تعيين إحداثييهما .
 - . [$-2;+\infty$ [المعرل و (C_{f}) على المجال ((C_{f})

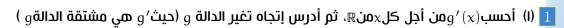
لدوال الاِسية – بكالوريا 2022

(ه) ناقش بيانيا و حسب قيم الوسيط× عدد و إشارة حلول المعادلة : على المجال . .



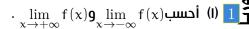
بكالوريا 2016 م02 الدورة الثانية

 $g(\mathbf{x}) = 2e^{\mathbf{x}} - \mathbf{x}^2 - \mathbf{x}$ الدالة العددية المعرّفة على \mathbf{g}



- $g'\left(x\right)\succ0$ ، ہن أجل كل x من أجل ، من أجل (ب)
- . (ج) أحسب نهايتي الدالة gعند كل من $+\infty$ و عند $-\infty$ ، ثم شُكِّلً جَدُولِ تغيراتها .
 - $-1,38 \prec lpha \prec rac{1}{37}$ بيّن أنّ المعادلة $g(\mathbf{x})=0$ تقبل حلا وحيداlphaحيث : $\mathbf{g}(\mathbf{x})=0$

الدالة العددية المعرفة على \mathbb{F}_{f} ب الدالة العددية المعرفة على \mathbb{F}_{f} ب الدالة العددية المعرفة على \mathbb{F}_{f} ب المنسوب والمتعامد و المتجانس \mathbb{F}_{f} ب المعلم المتعامد و المتجانس \mathbb{F}_{f} ب المعلم المتعامد و المتجانس المعلم المتعامد و المتجانس والمتعامد و المتجانس والمتعامد و المتجانس والمتعامد و المتجانس والمتعامد و المتعامد و ال



- . (رب) بیّن أنّه ، من أجل كل χ من χ ، χ من χ من χ أنّه ، من أجل كل χ من χ من χ من χ (ب) بیّن أنّه ، من أجل كل χ
 - (ج) أدرس اتجاه تغير الدالة f على \mathbb{R} ، ثم شكّل جدول تغيراتها .
 - . $f(\alpha)$ بيّن أن $f(\alpha)=\alpha^2+2\alpha+2+rac{2}{\alpha-1}$ ، ثم استنتج حصرا للعدد (۱) و بيّن أن
 - . با أحسب $\lim_{x o +\infty} \left[\mathsf{f}(\mathsf{x}) \mathsf{x}^2
 ight]$ ، ثمّ فسّر النتيجة بيانيا
 - $(\mathsf{f}(\pmb{lpha})pprox 0,29$ (نشئ المنحنى (C_f). (تعطى

3 30

بكالوريا 2017 م02 الدورة العادية

 \cdot انعتبر الدالة العدديةfالمعرّفة على \mathbb{R} بـ \cdot

 $(O;\overrightarrow{i},\overrightarrow{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس المتعامد و (C_f)

- $\lim_{x o -\infty}\mathsf{f}(\mathsf{x})$ بيّن أن $\lim_{x o +\infty}\mathsf{f}(\mathsf{x})$ و أعط تفسيرا هندسيا للنتيجة ، ثم أحسب $\inf(\mathsf{x})$
 - $f'(x) = x(x-2)e^{1-x}$ ، من $(x-2)e^{1-x}$ من (۱) بین أنه من أجل کل
 - (ب) أدرس اتجاه تغير الدالة_f ثم شكّل جدول تغيراتها .
 - . أكتب معادلة لـ (T) المماس للمنحنى (C_f) عند النقطة ذات الفاصلة 3

h الدالة العددية المعرفة على \mathbb{R} بـ الدالة العددية المعرفة المعرفة العرفة العددية المعرفة المعرفة العرب

- (T) بيّن أنه من أجل كلxمن π ، $h(x)\geqslant 0$ ، ثم أدرس الوضع النسبي للمنحنى و المماس الماس ال
 - $-0.7 \prec \alpha \prec -0.6$ بيّن أنّ المعادلة f(x) = 0 تقبل حلا وحيدا α حيث α
 - $[-1; +\infty[$ انشئ المماس (T) والمنحنى ($[C_f]$ على المجال ($[T_f]$

بكالوريا 2017 م01 الدورة الاستثنائية

 $g(x) = x^2 e^x - e$ نعتبر الدالة g المعرّفة على ب

تمثیلها $(C_{\mathfrak{q}})$ في المنسوب المستوي البياني

9

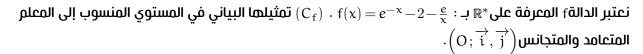
المتعامد

. g(1) أحسب 🚺

إلى

المعلم

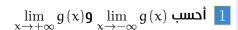
بقراءة بيانية عيّن إشارة $g\left(\mathbf{x}
ight)$ ، ثم استنتج إشارة $g\left(\mathbf{x}
ight)$ حسب قيم العدد الحقيقى $\mathbf{2}$

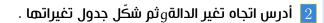


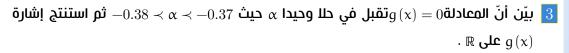
- $\cdot \lim_{x \to +\infty} f(x)$ و $\lim_{x \stackrel{\succ}{\to} 0} f(x)$ ، $\lim_{x \stackrel{\prec}{\to} 0} f(x)$ ، $\lim_{x \to -\infty} f(x) : 1$ المايات الأتية
- $(C_{
 m f})$ و المنحنى $y=e^{-{
 m x}}-2$ و المنحنى $y=e^{-{
 m x}}-2$ و المنحنى (γ) متقاربان بجوار ، ثم أدرس وضعية المنحنى (γ) بالنسبة لـ (γ) .
 - $f'(x) = rac{-g(-x)}{x^2}$ بیّن أنه من أجل کلxمنx
- $[-\infty;-1[$ استنتج أن الدالةf متزايدة تماما على كل من المجالين[-1;0] و[-1;0] متناقصة تماما على المجال $[-\infty;-1]$ ، ثم شكّل جدول تغيراتها .
- بيّن كيف يمكن إنشاء المنحني (γ) إنطلاقا من منحني الدالة $x\mapsto e^x$ ثم أرسم بعناية كلا من (C_{f}) وني (γ) نفس المعلم السابق.

بكالوريا 2018 م01

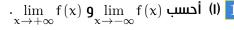
 $g(x) = 2 + (x-1)\,e^{-x}:$ والدالة العددية المعرفة على



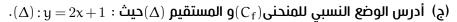


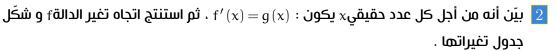


نعتبر الدالة \mathbf{f} المعرفة على \mathbf{g} ب على \mathbf{g} ب المستوي \mathbf{g} ب المستوي في المستوي أعتبر الدالة المعلم المتعامد والمتجانس \mathbf{g} ب المعلم المتعامد والمتجانس \mathbf{g} ب المعلم المتعامد والمتجانس والمتعامد والمتجانس والمتعامد و



 \int ب) أحسب $\lim_{x o +\infty} \left[f\left(x
ight) - \left(2x+1
ight)
ight]$ ، ثم فسر النتيجة بيانيا





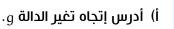
. معادلة المماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة 3

$$(f(lpha)pprox 0,8)$$
 أنشئ (Δ) ، والمنحنى أ (C_f) والمنحنى أ

m x=:xناقش بيانيا وحسب قيم الوسيط الحقيقيm mعدد و إشارة حلول المعادلة ذات المجمول ($1-m)\,e^{x}$

بكالوريا 2019 م01

 $2 {
m cm}$ المستوي منسوب إلى المعلم المتعامد و المتجانس $\left({
m O}; \overrightarrow{{
m i}}, \overrightarrow{{
m j}}
ight)$. تؤحذ وحدة الطول $g(x)=e^x-ex:$ كمايلي و g المعرّفتين على ${\mathbb R}$ كمايلي ${
m (C}_g)$ و ${
m (C}_f)$ و ${
m (C}_g)$ التمثيلان البيانيان للدالتين ${
m f}(x)=e^x-\frac{1}{2}ex^2$ و



- . الحقيقية χ الحقيقية g(x) الحقيقية g(x)
 - 2 أدرس إتجاه تغيّر الدالة f
- . رَمُ شَكِّل جِدُول تَغْيِرات الدَالة و $\lim_{x \to +\infty} f(x)$ ، ثمٌ شكِّل جِدُول تغيرات الدَّالة $\frac{1}{3}$

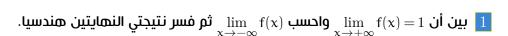
- \mathbb{R} أدرس الوضع النسبي للمنحنين (C_{g}) و (C_{g}) على 4
- e^2-2e (يعطى (C_g) و (C_g) في نفس المعلم و $(0; \overrightarrow{i}, \overrightarrow{j})$ المنحنين و (C_g) و (C_g) في نفس المعلم (0; 2]
 - . (C_g) و (C_f) أحسب بالسنتيمتر المرّبع ، مساحة الحيّز المستوي المحدّد بالمنحنيين 6
- الدالة المعرّفة على المجال [-2;2] كمايلي $h(x)=rac{1}{2}ex^2-e^{|x|}$ وليكن (Γ) تمثيلها البياني h وليكن ورب المعلم السابق
 - أ) بيّن أنّ h دالة زوجية .
- . ب) من أجل $x \in [0;2]$ أحسب h(x) + f(x) ثمّ إستنتج كيفية رسم $x \in [0;2]$ ثم أرسمه $x \in [0;2]$

بكالوريا 2020 م01

- $(O; \vec{\mathfrak{u}}, \vec{\mathfrak{v}})$ المستوي المنسوب إلى معلم متعامد ومتجانس (I
- $g(\mathbf{x})=2\mathbf{x}^2+2\mathbf{x}-2\mathbf{x}e^2$: في الشكل المرفق، (Γ) المنحنى الممثل للدالة g المعرفة على \mathbb{R} ب
 - $x \longmapsto e^x$ المستقيم ذو المعادلة y = y وy = x المنحنى الممثل للدالة (Δ)

بقراءة بيانية:

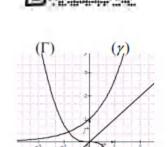
- $e^{\mathbf{x}}\!-\!\mathbf{x}\!\succ\!0:\mathbf{x}$ برر أنه من أجل كل عدد حقيقي $\mathbf{e}^{\mathbf{x}}\!-\!\mathbf{x}$
- g(0)=0 علما أن g(x) علما أن يور العدد الحقيقي g(x) علما أن
- $f(x)=-1+rac{2e^x}{e^x-x}:$ الدالة f المعرفة على $\mathbb R$ ب ب $\mathbb R$ بالمعلم السابق (II) ليكن (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم السابق.



- $f'(x) = rac{2e^x(1-x)}{(e^x-x)^2}$ یکون: χ یکون کل عدد حقیقی این آنه من أجل کل عدد حقیقی باید (۱)
 - (ب) استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها.
- $(\mathbf{C}_{\mathbf{f}})$ اكتب معادلة ل (\mathbf{T}) المماس للمنحنى النقطة $(\mathbf{C}_{\mathbf{f}})$ في النقطة الفاصلة الفاصلة (\mathbf{T})

$$f(x) - (2x+1) = \frac{g(x)}{e^x - x}$$
 یکون: (y) بین أنه من أجل کل عدد حقیقي (y)

- ${ \Bbb D}(C_{\rm f})$ استنتج الوضع النسبي ل $(C_{\rm f})$ و $(C_{\rm f})$ على $(C_{\rm f})$ ماذا تمثل النقطة A بالنسبة إلى
- $-0.6 \prec lpha \prec -0.5$ بين أن المعادلة f(x)=0 تقبل حلا وحيدا lpha في المجال $-\infty$; 1] بين أن المعادلة و

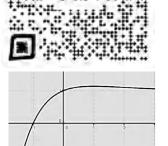


 $(C_{\rm f})$ والمستقيمين المقاربين ثم المنحنى ((T)

بكالوريا 2021 م01

- g الدالة العددية g المعرفة على \mathbb{R} ب الدالة العددية المعرفة على g
- $(O; \vec{u}, \vec{v})$ تمثيلها ومتجانس متعامد

- .g(-1) احسب 1
- g(x) بقراءة بيانية حدد حسب قيم χ إشارة 2
- fالدالة العددية f المعرفة على \mathbb{R} ب \mathbb{R} ب الدالة العددية f
 - $(O; \vec{u}, \vec{v})$ تمثیلها البیاني في معلم متعامد ومتجانس (C_f)
- $f(x) = x[1-(1+rac{1}{x})e^{-x-1}]:$ تحقق أنه من أجل كل عدد حقيقي x لدينا المينا عدد عقيقي 1 $\lim_{x \to +\infty} f(x)$ و احسب $\lim_{x \to -\infty} f(x)$ عثم احسب
 - f'(x) = g(x) ابین أنه من أجل كل عدد حقیقی x لدینا: (۱) 2
 - (ب) استنتج اتجاه تغير f ثم شكل جدولا لتغيراتها.
 - ا دسب $\lim_{x \to +\infty} (f(x) x)$ ثم فسر النتيجة بيانيا.
 - y = x بالنسبة للمستقيم (Δ) ذي المعادلة (C_f) ادرس وضعية (ب)
 - ه. هادلة الحين أن (C_f) يقبل مماسا (T) موازيا ل (C_f) يطلب تعيين معادلة له.
- eta و lpha يقطع حامل محور الفواصل في نقطتين فاصلتاهما lpha و lpha (۱) و بين أن $-1.9 \prec \beta \prec -1.8$ و $-1.9 \prec \alpha \prec 0.4$ بحيث
 - $[-2;+\infty[$ ارسم (C_f) و (C_f) على المجال (C_f)
 - $-|x|+(|x|-1)e^{|x|-1}$ الدالة h المعرفة على المجال [-2;2] ب[-2;2] $(O; \vec{u}, \vec{v})$ تمثیلها البیانی فی معلم متعامد ومتجانس ((C_h)
 - (۱) بين أن الدالة _h دالة زوجية.
 - h(x) = f(x) الدينا: [-2;0] من المجال x من أجل كل x من المجال
 - (ج) اشرح کیفیة رسم (C_h) انطلاقا من (C_f) ثم ارسمه.

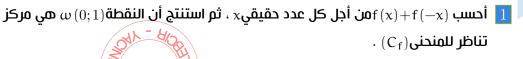


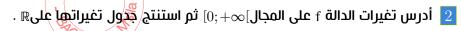
بكالوريات جزائرية شعبة تقني رياضي 🗲

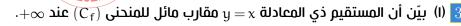
بكالوريا 2009 م01

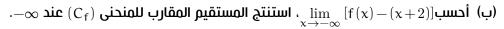
 $f(x) = x + \frac{2}{e^x + 1}$ نعتبر الدالةf المعرفة على \mathbb{R} كما يلي

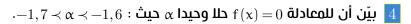
 $\left(0;\overrightarrow{i},\overrightarrow{j}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(\mathsf{C}_{\mathsf{f}}
ight)$









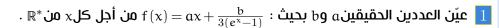


 $x\in\mathbb{R}$ أرسم (C_{f}) من أجل 5

بكالوريا 2010 م01

 $f(x)=rac{3xe^x-3x-4}{3(e^x-1)}:$ نعتبر الدالة العددية \Re^* المعرفة على

 $(\mathsf{C}_{\mathsf{f}})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $(\mathsf{C}_{\mathsf{f}})$



- . أحسب نهايات الدالة $_{
 m f}$ عند أطراف مجموعة تعريفها $_{
 m c}$
- . بیّن أن $_{
 m f}$ متزایدة تماما علی کل مجال من مجالی تعریفها ثم شکّل جدول تغیراتها $_{
 m f}$
- $y=x+rac{4}{3}$ و y=x: المستقيمان اللذان معادلتاهما على الترتيب $y=x+rac{4}{3}$ و $y=x+rac{4}{3}$. بيّن أن (D') و (D') مقاربان للمنحنی (C_f) ، ثم حدّد وضعيته بالنسبة لكل منهما
- $-1,66\prec x_1\prec 0$ (ب) بيّن أن المعادلة f(x)=0 تقبل حلين x_0 و x_0 حيث $x_0 \prec 0,91$ و $x_0 \prec 0,91$ -1,65
 - . فسّر النتيجة هندسياx غير معدومf(x)+f(-x)+f(-x) فسّر النتيجة هندسياx
 - (د) أرسم (D) ، (D) و (C_f) .

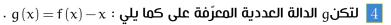
- y = x + mعدد حقيقي ، (D_m) المستقيم المعرّف بالمعادلة (D_m) f(x) = x + m : ناقش بیانیا حسب قیم mعدد حلول المعادلة
- نعتبر الدالةg المعرّفة على المجال $g(x)=[f(x)]^2:$ كما يأتى $g(x)=[f(x)]^2:$ أدرس تغيرات g(x)=[g(x)]g(x)الدالة و دون حساب g(x) بدلالة

بكالوريا 2011 م02

 $f(x)=3-rac{4}{e^x+1}:$ الدالة المعرّفة على $\mathbb R$ كما يلي f

 $\left(0;\overrightarrow{i},\overrightarrow{j}
ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{\mathrm{f}}
ight)$





- (l) أدرس تغيرات الدالة g
- $2.7 < \alpha < 2.8$: حيث α حيث g(x) = 0 حلا وحيدا α
 - . f(x) = 0 : المعادلة (l) 5
- (C_f) أرسم المماس و المستقيم (Δ) الذي معادلته y=x و المنحنى (ب

بكالوريا 2012 م01

 $g(x) = -4 + (4 - 2x)e^x$ وهي الدالة العددية المعرّفة على \mathbb{R}

- أدرس تغيرات الدالة g ، ثم شكّل جدول تغيراتها . $oldsymbol{1}$
- $1,59 \prec lpha \prec 1,60:$ بيّن أنّ المعادلة $g\left(x
 ight) = 0$ تقبل حلّين أحدهما معدوم و الآخر lpha حيث 2
 - . g(x) استنتج إشارة 3

مي الدالة المعرّفة على \mathbb{R} كما يلي : $\mathbf{C}_{f}(x) = \frac{2x-2}{e^{x}-2x}$ على على على على المستوي والدالة المعرّفة على على المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(O;\overrightarrow{i},\overrightarrow{j}\right)$. (وحدة الطول المتعامد والمتجانس

- y=-1 بيّن أن $(C_{
 m f})$ يقبل عند $-\infty$ و $+\infty$ مستقيمين مقاربين معادلتاهما على الترتيب $-\infty$ y = 09
 - $f'(x) = rac{g(x)}{(e^x 2x)} : x$ برهن أنه من أجل كل عدد حقيقي (۱) برهن أنه من أجل كل عدد الم
 - . f'(x) استنتج إشارة f'(x) ، ثم شكّل جدول تغيرات الدالة (ب)
 - $(\mathbf{f}(\mathbf{x})$ أحسب $\mathbf{f}(1)$ ، ثم استنتج ، حسب قيم
 - . مو العدد المعرّف في السؤال 2 من الجزء الأول ، $f(lpha)=-1+rac{1}{lpha-1}$ بينٌ أنّ $rac{1}{lpha-1}$
 - (ب) استنتج حصرا للعدد $f(\alpha)$ (تدوّر النتائج إلى $f(\alpha)$
 - . (C_f) أرسم (ج)

الدوال الاِّسية – بكالوريا 202

- $2\mathsf{x}-2=:$ ناقش بيانيا ، حسب قيم الوسيط الحقيقي m_{i} ، عدد و إشارة جلول المعادلة 4 $(e^{x}-2x)(m+1)$
 - . $\mathtt{h}(\mathtt{x}) = [\mathtt{f}(\mathtt{x})]^2 :$ هي الدالة المعرّفة على \mathtt{R} كما يلي \mathtt{h}
 - . h'(x)فر استنتج إشارة کل من f(x) و h'(x) ، ثم استنتج إشارة (۱)
 - (ب) شكّل جدول تغيرات الدالة .

بكالوريا 2013 م02

 $g(x) = g(x-1)e^x$ الدالةgمعرّفة على

- 1 أدرس تغيرات الدالة g.
- $1 + (x-1)e^x \ge 0$ بیّن أنه من أجل كل عدد حقیقی 2

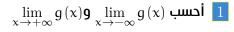
.
$$\{egin{array}{ll} f(x)=rac{e^x-1}{x}\ ;\ x\succ 0 \ \end{array}\}$$
 ومي الدالة المعرِّفة على] $(0;+\infty[$ كما يلي :

- $[0;+\infty]$ بيّن أنf مستمرة على (۱) ا
 - $\lim_{x \to +\infty} f(x)$ نب) أحسب (ب)
- . $f'(x) = \frac{1 + (x 1)e^x}{x^2} : [0; +\infty[$ ن من أجل كل عدد حقيقي x من (۱) تحقق أنه من أجل كل عدد حقيقي x
 - (ب) استنتج إتجاه تغير الدالةf ، ثم شكّل جدول تغيراتها .

 $f_{n}\left(x
ight)=rac{e^{x}-1}{x}+\ :$ عدد طبیعي حیث f_{n} ، $n\geqslant1$ الدالة المعرّفة علی n $.ig(O;\overrightarrow{i},\overrightarrow{j})$ تفثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_n) . n

- $[0;+\infty[$ ا أدرس إتجاه تغير الدالة f_n على المجال 1
 - $\lim_{x \to +\infty} f_n(x)$ و $\lim_{\substack{x \to 0 \\ x \to 0}} f_n(x)$ احسب 1
- (C_{n+1}) و (C_n) و النسبى للمنحنيين و أدرس الوضع النسبى للمنحنيين 3
- . بيّن أن جميع المنحنيات تمر من نقطة ثابتة ${ t B}$ يطلب تعيين إحداثياتها ${ t 4}$
- $f_1(\alpha_1) = 0$: بیّن أنه ، پوجد عدد حقیقی وحید α_1 من]0,3;0,4[بحیث ، پوجد عدد حقیقی وحید (۱) [0,3;0,4]
- (ب) بیّن أنه ، من أجل كل عدد طبیعیnحیث $1 \geqslant 1$ فإن $n \geqslant 1$ ثم برهن أنه یوجد $\mathbf{r}_{n}\left(\mathbf{lpha}_{n}
 ight)$ عدد حقیقی وحید \mathbf{lpha}_{n} من $\mathbf{lpha}_{1};1$ بحیث

. $g\left(x\right)=\left(x+2\right)e^{x}-2$ والدالة العددية المعرفة على \mathbb{R} كما يلى



- 2 أدرس اتجاه تغير الدالةgثم شكّل جدول تغيراتها .
 - g(x) أحسبg(0)، ثم استنتج إشارة

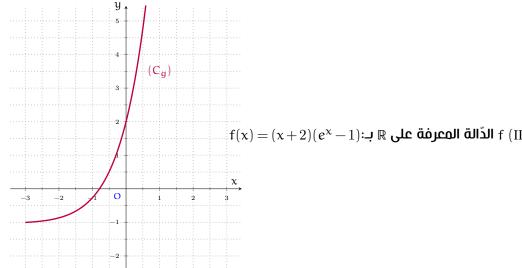
نعتبر الدالة $f(x) = 2x + 3 - (x + 1)e^x$ ب تعثيلها البياني في اعتبر الدالة المعرفة على R ب $.\left(O;\overrightarrow{i},\overrightarrow{j}
ight)$ المستوي المنسوب إلى المعلم المتعامد والمتجانس

- $\lim_{x\to -\infty} f(x)$ بيّن أن $\lim_{x\to +\infty} f(x) = -\infty$ ، ثم أحسب أ
- f'(x) = -g(x) بیّن أنه من أجل كل عدد حقیقیx يكون (۱) 2
 - . fاستنتج اشارة f'(x) ، ثم شكّل جدول تغيرات الدالة (ب)
- $-\infty$ جن أن المستقيم (Δ) ذا المعادلةy=2x+3 مستقيم مقارب مائل للمنحنى (Δ) عند (C_f) (Δ) أدرس وضعية (C_{f}) بالنسبة للمستقيم (Δ)
- $-1,56 \prec \beta \prec g \rightarrow 0,92 \prec \alpha \prec 0,93:$ تقبل حلّین α و β حیث f(x)=0 و f(x)=0 این أن المعادلة f(x)=0-1,55

 $[-\infty;rac{3}{2}]$ ب أنشئ المستقيم (Δ)والمنحنى ($C_{
m f}$)على المجال

بكالوريا 2019 م01

- - $.g(-rac{1}{2})$ و g(-1) عدّد إشارة (1
- ب) إستنتج وجود عدد حقيقي α وحيد من المجال $1; -\frac{1}{2}$ $1; -\frac{1}{2}$ وحيد من المجال $g(\alpha)=0$ بحيث $g(\alpha)=0$ ثم تحقّق أنّ $g(\alpha)=0$
 - \mathbb{R} جg(x) على g(x) على



- (C_f) و تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس و (C_f)
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ أحسب أ
 - f'(x)=g(x)، f عدد حقيقي عدم عَل عدد عقيقي و من عَل عدد عقيقي و بيّن أنّه من عل عدد عقيقي $\mathbf{g}(x)$
- أ) أحسب (f(x)+x) ثم إستنتج أنّ (C_f) يقبل مستقيما مقاربا مائلا (Δ) يطلب تعيين معادلة له.
 - ب) أدرس الوضع النسبي للمنحنى (C_f) والمستقيم (Δ) .
 - .(Δ) ج) أكتب معادلة ل(T) مماس (C_f) مماس
 - $(\mathbf{f}(\mathbf{\alpha}) pprox -0.7$ أرسم المستقيم (Δ) والمنحنى $(C_{\mathbf{f}})$ على المجال (Δ)
 - \mathbb{R} على f أحسب f(x)-g(x) ثم إستنتج دالة الأصلية للدالة f

- البياني (C_h) و $h(x)=|x|(e^{|x|-2}-1)+1:$ كمايلي $\mathbb R$ كمايلي h 6 كمايلي . و المعلم السابق .
 - أ) بيّن أنّ الدّالة h زوجية.
 - . ب) بناكد أنّه من أجل كل x من المجال $]0;+\infty[$ فإنّ x من أجل كل x
 - [-3;3] على المجال ((C_h) ج) غيف يمكن رسم على إنطلاقا من (C_f) غي أرسم

بكالوريا 2020 م01

f(x)=x-1الدالة العددية f معرفة على المجال f(x)=x-1ب: $[-1;+\infty[$ بالدالة العددية

 $(O; \vec{u}, \vec{v})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $(C_{\rm f})$ وحدة الطول (2cm).

- . $f'(x) = (1 e^{-x})(2e^{-x} + 1) : [-1; +\infty[$ بين أنه من أجل كل عدد حقيقي x من المجال (۱)
 - (\mathbf{p}) ادرس إشارة $\mathbf{f}'(\mathbf{x})$ واستنتج اتجاه تغير الدالة \mathbf{f}
 - f (ج) احسب $\operatorname{f}(x)$ ثم شكل جدول تغيرات الدالة $\operatorname{f}(x)$
 - $y=x-rac{3}{4}$ را) بين أن المستقيم $y=x-rac{3}{4}$ المعادلة (Δ) دي المعادلة (Δ) بين أن المستقيم (Δ) دي المعادلة (Δ)
 - له. معادلة له. مماسا (T) موازیا للمستقیم (Δ) یطلب کتابة معادلة له. (C_f)
 - . بین أن (C_{f}) یقبل نقطة انعطاف یطلب تعیینها 4
 - (C_{f}) ارسم (Δ) ، (T) والمنحنى (T)
- f(x) = x + m ليكن m وسيط حقيقي. عين مجموعة قيم m التي من أجلها تقبل المعادلة m حلين مختلفين.

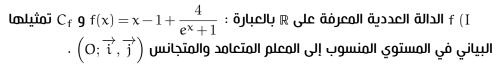
بكالوريا 2021 م01

- $g(\mathbf{x}) = \mathbf{x}^2 \mathbf{5} + e^{\mathbf{x} 1}$ الدالة g المعرفة على المجال $g(\mathbf{x}) = \mathbf{x}^2 \mathbf{5} + e^{\mathbf{x} 1}$ بادالة و
 - $[0;+\infty[$ بين أن الدالة g متزايدة على المجال g
- $1.71 \prec lpha \prec 1.72$ بين ان المعادلة g(x) = 0 تقبل حلا وحيدا lpha بحيث (I) 2
 - $.g(\mathbf{x})$ استنتج حسب قیم \mathbf{x} اشارة (ب)
- $f(x) = x + 1 + (-x^2 2x + 3)e^{1-x}$ بادالة العددية المعرفة على المجال $f(x) = x + 1 + (-x^2 2x + 3)e^{1-x}$ بادالة العددية المعرفة على المجال
 - $(O; ec{u}, ec{v})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C)

- f'(x) = g(x) این أنه من اجل کل عدد حقیقی موجب x لدینا: (۱) 1
 - (p) استنتج اتجاه تغير الدالة g على المجال $[0;+\infty[$
- \inf بین أن $\lim_{x \to +\infty} f(x) = +\infty$ ثم شكل جدولا لتغیرات الدالة (ج.
- (C) نم ادرس وضعية y=x+1 مستقيم (Δ) نم ادرس وضعية يين أن المستقيم (Δ) نم ادرس وضعية يين أن المستقيم (Δ).
- ين (C) يقبل مماسا (T) موازيا ل (Delta) في نقطة A يطلب تعيين فاصلتها . (لايطلب (C) يقبل مماسا (T)).
 - (1)بین أن (C) یقبل نقطة انعطاف وحیدة فاصلتها (C)
 - $\mathsf{f}(lpha)\simeq 1.1$ (C) و (T) و (C) . ((C) و (T) و (Δ) . (C) و (T) و (Δ)
 - $f(x)=-x+1+(-x^2+2x+3)e^{x+1}:$ الدالة لا المعرفة على $]-\infty;0]$ بن تمثيلها البياني في المعلم السابق ($C_{\rm h}$)
 - h(x)=f(-x):تحقق أنه من أجل كل عدد حقيقي سالب لدينا (۱)
 - (ب) اشرح کیفیة رسم $(C_{
 m h})$ انطلاقا من (C) ثم ارسمه.

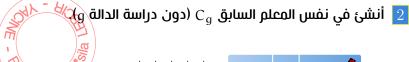
5 بكالوريات جزائرية شعبة رياضيات 🗲

بكالوريا 2008 م02



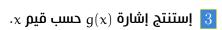
- 1 أدرس تغيرات الدالة f .
- . ω عند النقطة σ عند النقطة σ أ) بين أن σ يقبل نقطة إنعطاف σ وأكتب معادلة لمماس σ
 - . C_f ب) أثبت أن w مركز تناضر للمنحنى
 - . $\lim_{x \to -\infty} \left[f(x) (x+3) \right]$ و $\lim_{x \to +\infty} \left[f(x) (x-1) \right]$ أحسب (أ
 - ب) إستنتج أن C_f يقبل مستقيمين مقاربين يطلب إعطاء معادلة لكل منهما.

-]-2.77;-2.76اً من المجال χ_0 من المجال في نقطة وحيدة فاصلتها و χ_0 من المجال (أ
 - . ب) أحسب f(1) و مستقيميه المقاربين f(-1) ثم أرسم f(1) و مستقيميه المقاربين
- و الدالة العددية المعرفة على $\mathbb R$ بالعبارة $g(x)=-x+3-rac{4}{e^x+1}$ منحنى g(x)=0 منحنى على g(x)=0 منحنى والة g(x)=0
 - g(x) = f(-x):أ) بين أنه من أجل كل عدد حقيقي x فإن
 - \cdot , C_g با إستنتج أنه يوجد تحويل نقطي بسيط يحول



بكالوريا 2010 م02

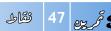
- $g(x) = (3-x)e^x 3$ الدالة العددية المعرفة على $\mathbb R$ كمايلي g (I
 - 1 أدرس تغيرات الدالة g.
- $2.82 \prec lpha \prec :$ بين أن المعادلة $g(\mathbf{x}) = 0$ تقبل في \mathbf{g} حلين أحدهما معدوم والأخر \mathbf{g} حيث 2.83



$$f(x)=rac{x^3}{e^x-1}\,;x
eq 0$$
الدالة العددية المعرفة على $\mathbb R$ كمايلي و f (II $f(0)=0$

- $.\left(0;\overrightarrow{i},\overrightarrow{j}
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f)
- يين أن الدالة ${\bf f}$ تقبل الإشتقاق عند ${\bf x}_0=0$ ، أكتب معادلة لـ ${\bf (T)}$ مماس ${\bf (C_f)}$ عند المبدأ .O
 - . $\lim_{x \to -\infty} f(x)$ ، $\lim_{x \to +\infty} f(x)$ ، ثم أحسب أن: $\lim_{x \to +\infty} x^3 e^{-x} = 0$
 - $f'(\mathsf{x}) = rac{\mathsf{x}^2 \mathsf{g}(\mathsf{x})}{(e^\mathsf{x} 1)^2}$ ب) بین أنه من أجل $\mathsf{x}
 eq 0$ فإن
 - ج) تحقق أن: $\mathbf{f}(\alpha) = \alpha^2(3-\alpha)$ ثم عين حصرا له.
 - د) أنشئ جدول تغيرات الدالة f.
 - $x\mapsto -x^3$ أحسب $f(x)+x^3$ و إستنتج الوضعية النسبية لـ $f(x)+x^3$ و أحسب $f(x)+x^3$ المالة النسبية المسبية ل $\lim_{x\to -\infty}\left[f(x)+x^3\right]=0$ بين أن $f(x)+x^3$

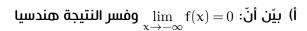
. (C_f) و (C) و المنحنيين (C) و المعلم المع



بكالوريا 2011 م01

 $f(x)=(3x+4)e^x$: نعتبر الدالة العددية f المعرفة على $\mathbb R$ كمايلي المعلم المتعامد و المتجانس (C_f) و C_f تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس C_f

- $f^n(x)=$ أحسب f'' ، f'' ثم برهن بالتراجع أنّه من أجل كل عدد طبيعي f''' ، f'' ثم برهن بالتراجع أنّه من أجل كل عدد طبيعي f''' ، f'' ، f'
 - $y^{\,\prime\prime} = (3 {
 m x} + 16) e^{
 m x}$ ب $y^{\,\prime\prime} = (3 {
 m x} + 16) e^{
 m x}$ ب



- ب) أدرس إتجاه تغير الدالة f ، ثم شكّل جدول تّغيراتها
- . $-\frac{10}{3}$ أكتب معادلة للمماس (Δ) للمنحنى (C_{f}) في النقطة ω التي فاصلتها (أ
 - (C_f) بيّن أن ω هي نقطة إنعطاف المنحنى
 - $[-\infty;0]$ ج] أرسم $[C_{\mathrm{f}})$ و $[C_{\mathrm{f}})$ على المجال
- أ، $\int\limits_{-1}^{x} te^t dt$ عدد حقيقي من المجال $[-\infty;0]$ ، بإستعمال التكامل بالتجزئة جد $[-\infty;0]$ ، ثم إستنتج د الة أصلية للدالة $[-\infty;0]$ على المجال $[-\infty;0]$
 - $-rac{4}{3}$ ب) λ عدد حقیقی أصغر تماما من λ الدینات درالة λ الدینات

أحسب بدلالة λ المساحة (λ) للحيز من المستوي المحدد بالمنحنى (λ) و المستقيمات . $\lim_{\lambda\to-\infty}A(\lambda)$ بثم جد λ ، λ بثم جد (λ) و المستقيمات التي معادلاتها المساحة (λ) بأدار المستقيمات المستقيم المستقيم المستقيم المستقيمات المستقيمات المستقيمات المستقيم المستقيمات المست

بكالوريا 2012 م01

- . $g(x) = 2 xe^x$ مى الدالة المعرفة على $\mathbb R$ كمايلي g (g
 - . أدرس تغيرات الدالة g ، ثم شكل جدول تغيراتها $oldsymbol{1}$
- $0.0,8 \prec lpha \prec 0.9$ بيّن أنّ المعادلة : $g(\mathbf{x}) = 0$ تقبل حلا وحيدا \mathbf{a} على \mathbf{g} ، ثمّ تحقق أنّ
 - g(x) عیّن ،حسب قیم x اشارة 3

- $f(x)=\dfrac{2x+2}{e^x+2}:$ حمي الدالة المعرفة على $\mathbb R$ كمايلي و f (II $f(x)=\dfrac{2x+2}{e^x+2}:$ مي الدالة المعرفة على $\mathbb R$ كمايلي في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f) وحدة الطول (2cm)
 - . أن: $\lim_{x \to +\infty} \mathsf{f}(x) = 0$ ، ثم فسر النتيجة الهندسية .
 - $\lim_{x \to -\infty} f(x)$ أحسب (أ
 - (C_f) بيّن أن المستقيم (Δ') ذا المعادلة y=x+1 مستقيم مقارب للمنحنى
- أدرس وضعية (C_f) بالنسبة إلى كل من (Δ') و (Δ') و (Δ) ، حيث (C_f) هو المستقيم ذو المعادلة y=x
- . f غير الدالة من أجل كل عدد حقيقي x ، x $\frac{2g(x)}{(e^x+2)^2}$ ، x عدد حقيقي (أ
 - . f بيّن أن: $\alpha = \alpha$ ، ثم شكل جدول تغيرات الدالة
 - . (C_{f}) و (Δ') ، (Δ) و (Δ')
 - f(x)=f(m) عدد حلول المعادلة ، مسب قيم الوسيط الحقيقي m ، عدد حلول المعادلة ${f 6}$
 - ومن أجل كل عدد $U_n)$ هي المتتالية العددية المعرفة على $\mathbb N$ كمايلي U_n ومن أجل كل عدد $U_{n+1}=f(U_n):n$ طبيعي U_n
 - $0\leqslant U_n\leqslant lpha:$ ת برهن بالتراجع أنه من أجل كل عدد طبيعي $oldsymbol{1}$
- و يا ، ثم خمّن إتجاه ، u_2 و u_1 ، u_0 : بإستعمال (u_1) مثّل على محور الفواصل الحدود (u_1 ، u_2 و مصّن إتجاه . (u_n) تغير
 - . برهن أن المتتالية (\mathfrak{U}_n) متقاربة ، ثم أحسب نهايتها 3

بكالوريا 2013 م01

- $g(x)=1+(x^2-1)e^{-x}:$ الدالة g معرفة على $\mathbb R$ بـ (I
 - $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ أحسب (أ
- و) $g\left(1-\sqrt{2}
 ight)pprox-0,25$ ب) أدرس إتجاه تغير الدالة g ،ثم شكل جدول تغيراتها . (ناحذ: $g\left(1+\sqrt{2}
 ight)pprox1,43$
- ، α أَن المعادلة : g(x)=0 تقبل حليّن في $\mathbb R$ ، ثمّ تحقّق أنّ أحدهما معدوم و اللّخر \cdots الله المعادلة : $-0.8 \prec \alpha \prec -0.7$

- \cdot ب) إستنتج إشارة g(x) حسب قيم العدد الحقيقى \cdot
- $f(x) = x (x+1)^2 e^{-x}$ الدالة f معرفة على \mathbb{R} بنا (II
- $.ig(\mathrm{O};\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}}ig)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f) (وحدة الطول 2cm)

 - $+\infty$ بيّن أنّ المستقيم (Δ) ذا المعادلة $\chi=\chi$ ، مقارب مائل للمنحنى (Δ) عند
 - (Δ) أدرس وظعية المنحنى (C_f) بالنسبة إلى المستقيم
- (ريرمزf'(x)=g(x):x المشتقة للدالة المشتقة للدالة أ) بيّن أنّه ، من أجل كل عدد حقيقي
 - ب) شكّل جدول تغيرات الدالة $_{\mathrm{f}}$ على $_{\mathrm{g}}$. تأحذ : $(_{\mathrm{f}})$
- أ) بيّن أنّ المنحى $(C_{\rm f})$ يقبل ممامسين ، معامل توجيه كل مُنَّهُما يساوى 1 ، يطلب تعين معادلة لكل منهما .
 - \cdot ($C_{\rm f}$) و المماسين و المنحنى (Δ) ب مثل
- \cdot باقش بيانيا ، حسم قيم الوسيط الحقيقى $oldsymbol{m}$ ، عدد حلول المعادلة ذات المجهول $(x+1)^2 + me^x = 0$
 - . $H(x) = (-x^2 4x 5)e^{-x}$ الدالة H معرفة على \mathbb{R} ب ب
 - $\mathbf{x}\mapsto (\mathbf{x}+1)^2\mathbf{e}^{-\mathbf{x}}$ الله أصلية للدالة: H دالة أصلية للدالة:
- (Δ) أحسب بالسنتيمتر المربع ، مساحة الحيّز المستوى المحدّد بالمنحنى $(C_{
 m f})$ و المستقيم $\mathbf{x} = 0$ و المستقيمين اللّذين معادلتاهما
- $\mathfrak{u}_{n+1}=:\mathfrak{n}$ المتتلية العددية المعرّفة ب $\mathfrak{u}_0=lpha=\mathfrak{u}$ و من أجل كل عدد طبيعى (\mathfrak{U}_n) $f(u_n)$

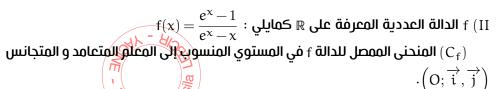
 $(g(\alpha) = 0 : \alpha$ يحقق (تذكر أنّ العدد α

- $-1 \leqslant \mathfrak{u}_n \leqslant \alpha$ ، n برهن بالتراجع أنّه ، هن أجل كل عدد طبيعيى
 - . بيّن أنّ المتتالية (\mathfrak{U}_n) متناقصة 2
 - . إستنتج أنّ (\mathfrak{U}_n) متقاربة ، ثمّ أحسب نهايتها 3

الدوال 👼 بكالوريا 2022

بكالوريا 2014 م01

- $g(x) = (2-x)e^x 1:$ ادالة العددية المعرفة على $\mathbb R$ كمايلي g(x) = g(x)
 - g أدرس تغيرات الدالة
- $1.8 \prec \beta \prec 1.9$ و 3 حيث $-1.2 \prec \alpha \prec -1.1$ و 3 حيث g(x)=0 حلان g(x)=0
 - . \mathbb{R} على g(x) على 3



- . أحسب نهاية الدالة f عند f عند f فسر النتيجتين هندسيا أحسب نهاية الدالة أعند f
- و بیّن أنه من أجل كل عدد حقیقي $x: x=rac{g(x)}{(e^x-x)^2}$ و إستنتج إتجاه تغیر الدالة a ثم شكل جدول تغیراتها .
 - f(eta) و f(lpha) و ييّن أنّ $f(lpha)=rac{1}{lpha-1}$ و إستنتج حصرا للعددين 3
 - . (C_f) ثم أرسم المنحنى f(1)
 - $_1$ عدد حقيقي أكبر أو يساوي $_{\lambda}$
 - $lpha(\lambda) = \int\limits_1^\lambda \left[f(x) 1
 ight] \mathrm{d}x :$ أ أحسب بدلالة λ العدد
 - $+\infty$ ب) أحسب نهاية $lpha(\lambda)$ عندما يؤول λ إلى

بكالوريا 2015 م02

- $:]-\infty;0[$ و من أجل كل عدد حقيقي x من المجال f و من أجل كل عدد f و من أجل كا عدد f و من أجل f
- المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f) المنحنى الممثل للدالة $O(\overrightarrow{i},\overrightarrow{j})$
 - . أدرس إستمرارية الدالة f عند 0 من اليسار $oxed{1}$
 - . أحسب $\lim_{x \stackrel{.}{ o} 0} \frac{f(x)}{x}$ ، ثنّفسر النتيجة هندسيا

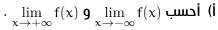
- $\lim_{x \to -\infty} f(x)$ أحسب (أ
- ب) أدرس إتجاه تغيّر الدالة f ، ثم شكّل جدول تغيّراتها .
 - . $\lim_{x \to -\infty} [f(x) x] = 0$ يُن أَنَّ: (1)
- ب) استنتج أنّ المنحنی $(C_{\rm f})$ يقبل مستقيما مقاربا مائلا (Δ) بجوار $(C_{\rm f})$ يقبل مستقيما مقاربا مائلا الم
 - . $g(\mathbf{x})=rac{\mathsf{f}(\mathbf{x})}{\mathbf{x}}:$ الدالة المعرفة على المجال g=0 بـ: g
 - اً أحسب g(x) أحسب أ
 - . أدرس إتجاه تغيّر الدالة g ثم شكّل جدول تغيراتها
 - ر بيّن أنّه من أجل كل عدد حقيقي x من المجال ∞ ∞ أ) بيّن أنّه من أجل كل عدد حقيقي ∞
 - $\widehat{}$ ب) إستنتج وظعية المنحنى $(C_{
 m f})$ بالنسبة إلى المستقيم $\widehat{}$
 - ج) أنشئ المنحنى (C_f) .
 - \cdot $\mathfrak{u}_{n+1} = \mathsf{f}(\mathfrak{u}_n) : \mathsf{n}$ المتتالية العرّفة ب $\mathfrak{u}_0 = -3$ و من أجل كل عدد طبيعي (\mathfrak{u}_n)
 - . $u_n \prec 0: n$ أ) بيّن أنّه من أجل كل عدد طبيعي
 - (\mathfrak{u}_n) حدّد إتجاه تغيّر المتتالية
 - $\lim_{n o +\infty} \mathfrak{u}_n$ بيّن أنّ المتتالية (\mathfrak{u}_n) متقاربة ، ثم عيّن
- $= -\infty;0$ ا الدالة ذات المتغيّر الحقيقيي $= 1-\infty;0$ المعرفة على المجال $= 1-\infty;0$ ب. $= 1-\infty;0$ الدالة ذات المتغيّر الحقيقيي $= 1-\infty;0$ الدالة ذات المتغيّر الحقيقيي $= 1-\infty;0$
 - . $h_{\mathfrak{m}}$ حيث $h'_{\mathfrak{m}}$ مى الدالة المشتقة للدالة أ
- ب) بإستعمال المنحنى $(C_{\rm f})$ ، ناقش بيانيا وحسب قيم الوسيط الحقيقي ${\mathfrak m}$ ، عدد حلول المعادلة و ${\mathfrak h}'_{\rm m}({\mathfrak x})=0$

گر چھ

بكالوريا 2016 م02

- $\varphi(\mathbf{x}) = \left(\mathbf{x}^2 \mathbf{x} + 1\right)e^{-\mathbf{x} + 1} 1:$ الدالة العددية المعرّفة على $\mathbb R$ كمايلي $\varphi(\mathbf{I})$
 - $\lim_{x \to +\infty} \phi(x)$ و $\lim_{x \to -\infty} \phi(x)$ أحسب (1)
 - ب) أدرس إتجاه تغيّر الدالة φ ثم شكّل جدول تغيّراتها .

- $2,79\prec lpha\prec lpha$ بيّن أنّ المعادلة : 0=0 تقبل في 0 ، حلاً lpha يختلف عن 1 ثم تحقّق أنّ : 0 عن 0 جين أنّ المعادلة : 0
 - . \mathbb{R} استنتج إشارة $\varphi(x)$ على 3
- g(x)=g و الدالتان العدديتان المعرّفتان على $\mathbb R$ كمايلي : g و الدالتان العدديتان المعرّفتان على g كمايلي : $\frac{2x-1}{x^2-x+1}$
- و (C_g) تمثيلاهما البيانيان في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_g) .



- ب) أدرس إتجاه تغيّر الدالة $_{
 m f}$ ، ثم شكل جدول تغيّراتها. $_{
 m c}$
- ين أن ٌ للمنحنيين $(C_{\rm f})$ و $(C_{\rm g})$ مماسا مشتركا (T) في النقطة دات الفاصلة $(C_{\rm g})$ ثمّ جد معادلة له .
 - (C_f) أرسم المماس (T) و المنحنى (T)
 - . $f(x) g(x) = \frac{(2x-1)\varphi(x)}{x^2 x + 1} : x$ کا عدد حقیقي (أ
- و) و النسبي للمنحنيين المرق f(x)-g(x) على \mathbb{R} ، ثمّ إستنتج الوضع النسبي للمنحنيين و المرق . (C $_{\mathbf{q}}$
 - $\int\limits_{1}^{x}f(t)dt:x$ ج) بإستعمال مكاملة بالتجزئة ، أحسب بدلالة العدد الحقيقي
 - د) أحسب مساجة الحيّز المستوي المحدّد بالمنحنيّين (C_g) و (C_g) و المستقيمين اللذيّن . x=2 ، x=1

(III)

- غير عدد طبيعي غير $f^{(n)}(x)$ أعط تخمينا لعبارة $f^{(n)}(x)$ حيث $f^{(3)}(x)$ معدوم .
- $f^n(x) = (-1)^n \left[2x (2n+1)\right] e^{1-x} : n$ برهن بالتراجع أنّه من أجل كل عدد طبيعي غير معدوم
- $\mathfrak{u}_n=:$ المتتالية العددية المعرّفة من أجل كل عدد طبيعي غير معدوم \mathfrak{n} ، كمايلي \mathfrak{U}_n . $f^{(n)}(1)$
 - $\mathfrak{u}_k + \mathfrak{u}_{k+1} :$ المجموع ، المجموع غير المعدوم) أحسب بدلالة العدد الطبيعي غير المعدوم
 - $\mathfrak{u}_1+\mathfrak{u}_2+\cdots+\mathfrak{u}_{2n}:$ ب) إستنتج بدلالة \mathfrak{n} ، المجموع

بكالوريا 2017 م01

 $\mathsf{f}(\mathsf{x}) = (-\mathsf{x}^3 + 2\mathsf{x}^2)e^{-\mathsf{x}+1}$ نعتبر الدالة العددية المعرّفة على \mathbb{R} ب

 $.\left(0;\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}}
ight)$ المنحنى الممثل للدالة $_f$ في المستوي المنسوب إلى المعلم المتعامد و المتجانس الممثل للدالة $_f$

- أ) أحسب (C_f) يطلب تعيين معادلة ، $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ إستنتج وجود مستقيم مقارب للمنحنى أ $\lim_{x \to +\infty} f(x)$ يطلب تعيين معادلة له .
 - $f'(x)=x(x^2-5x+4)e^{-x+1}:x$ بيّن أنّ: من أجل كل عدد حقيقي $f'(x)=x(x^2-5x+4)e^{-x+1}:x$ ثم إستنتج إتجاه تغيّر الدالة $f'(x)=x(x^2-5x+4)e^{-x+1}:x$ ثم إستنتج إتجاه تغيّر الدالة $f'(x)=x(x^2-5x+4)e^{-x+1}:x$
 - . 2 أكتب معادلة (T) مماس المنحنى (C_f) في النقطة ذات الفاصلة 2
- . الدالة المعرفة على المجال $0;+\infty[$ كمايلي $(0;+\infty[$ كمايلي h الدالة المعرفة على المجال h ثم إستنتج إشارة h ثم إستنتج إشارة h عدّد عند ئذ و ظعية المنحنى h بالنسبة إلى h على أدرس إتجاه تغيّر الدالة h ثم إستنتج إشارة h ثم إستنتج المجال h عند أنذ و ظعية المنحنى h بالنسبة إلى h على أدرس إتجاه تغيّر الدالة h ثم إستنتج إشارة h عند أنذ و ظعية المنحنى h بالنسبة إلى h على أدرس إتجاه تغيّر الدالة h ثم إستنتج إشارة h عند أنذ و ظعية المنحنى h على أدرس إتجاه تغيّر الدالة h أدرس إستنتج إشارة h على أدرس إتجاه تغيّر الدالة أدرس إستنتج إشارة h أدرس إستنتج إلى أدرس إلى أدرس
 - . $[0;+\infty[$ على المجال (C_f) و المنحنى المجال (T)
 - $(E)\cdots f(x)=m(x-2):$ نعتبر m وسيط حقيقي و المعادلة ذات المجمول الحقيقي x الموجب وسيط حقيقي و المعادلة m عدد حلول المعادلة m .
 - . $g(x)=f\left(\frac{1}{x}\right)$ بادالة المعرفة على المجال g(x)=0; بg(x)=g(x) بادالة المعرفة على السؤال رقم g(x) ، شكّل جدول تغيّرات الدالة g(x)

🖠 قرين 54

بكالوريا 2017 م02 الدورة الاستثنائية

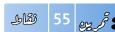
 $\|\overrightarrow{\mathfrak{i}}\|=1$ دm : المستوي منسوب إلى المعلم المتعامد و المتجانس $\left(O;\overrightarrow{\mathfrak{i}},\overrightarrow{\mathfrak{j}}\right)$ حيث $\left(C\right)\cdot f(x)=(x+1)^2e^{-x}$ عمايلي \mathbb{R} كمايلي \mathbb{R} كمايلي \mathbb{R} كمايلي \mathbb{R} كمايلي المعرفة على \mathbb{R}

- $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ أحسب أ
- . أدرس إتجاه تيغيّر الدّالة $_{\mathrm{f}}$ ثمّ شكّل جدول تغيراتها $_{\mathrm{f}}$
- (C) يقبل نقطتي إنعطاف يطلب تعيّين إحداثييهما ، أحسب f(-2) ، ثم أرسم المنحى (C)

 $f_{\mathfrak{m}}(x)=(x^2+\mathfrak{m} x+1)e^{-x}:$ ليكن \mathfrak{m} وسيط حقيقي ، نعتّبر الدّالة $\mathfrak{f}_{\mathfrak{m}}$ المعرّفة على \mathfrak{g} كمايلي \mathfrak{m} العكن \mathfrak{m} وليكن \mathfrak{g} تمثيلها البياني في المعلم السابق .

- . أثبت أنّ جميع المنحنيات $(C_{\mathfrak{m}})$ تشمل نقطة ثابتة w يطلب تعيين إحداثييها 1
- أدرس إتجاه تغير الدّالة $f_{\mathfrak{m}}$ و إستنتج قيم \mathfrak{m} التي من أجلها تقبل الدالة $f_{\mathfrak{m}}$ قيمتين حدّيتين يطلب تعيينهما .
 - $x_m=1-m:$ حيث x_m منقطة من المنحنى (C_m) فاصلتها M_n حيث M_n نقطة من المنحنى m يمسح m فإن m تنتمى إلى منحن يطلب تعيين معادلة له .
 - . (C_m) و (C) الوظعية النّسبية للمنحنيين، $m \neq 2$ عيث $m \neq 2$ ، حيث ، $m \neq 2$ أدرس حسب قيم الوسيط الحقيقي
 - أحسب بدلالة العدد الحقيقي الموجب تماما $A(\alpha)$ ، α مساحة الحيز المستوي المحدّد بالمنحنيين $\lim_{\alpha \to +\infty} A(\alpha): \alpha$ و المستقيمين اللّذين معادلتيهما $\alpha = \alpha = \alpha$ ثمّ أحسب $\alpha = \alpha$ و $\alpha = \alpha$

2022



بكالوريا 2018 م01

 $g(x)=(1+x+x^2)e^{- frac{1}{x}}-1$ بادالة العددية المعرفة على المجال $g(x)=(1+x+x^2)e^{- frac{1}{x}}-1$ بادالة العددية المعرفة على المجال $g(x)=(1+x+x^2)e^{- frac{1}{x}}-1$

- $g'(x)=rac{(x+1)(2x^3+1)}{x^2}e^{-rac{1}{x}}:]0;+\infty[$ بيّن أنّه من أجل كل x من المجال x من المجال x على المجال x و إستنتج إتجاه تغير الدالة x على المجال x
 - $0,9\prec lpha\prec 1$ بيّن أنّ المعادلة $g(\mathbf{x})=0$ تقبل حلا وحيدا $g(\mathbf{x})=0$ بيّن أنّ المعادلة $g(\mathbf{x})=0$ على المجال $g(\mathbf{x})=0$
- $f(x)=rac{1}{x}+(1+x)e^{-rac{1}{x}}$ الدالة العددية المعرفة على المجال f II و f التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد و المتجانس $f(C_f)$. $f(C_f)$.
 - . $\lim_{\substack{x \to 0 \\ x \to 0}} f(x)$ و $\lim_{x \to +\infty} f(x)$ أحسب أ
 - $f'(x)=rac{g(x)}{x^2}:]0;+\infty$ رب) بيّن أنّه من أجل كل x من المجال x من أجل كل بيّن أنّه من أجل كل x من المجال x و إستنتج إتجاه تغير الدالة x ثم شكّل جدول تغيراتها .
- (Δ) بيّن أنّ : $t=-rac{1}{x}$ بيّن أنّ : $t=-rac{1}{x}$ (يمكن وضع $\lim_{x o +\infty}\left(xe^{-rac{1}{x}}-x
 ight)=-1$ ثم إستنتج أنّ المستقيم ($t=-rac{1}{x}$ بيّن أنّ : y=x مقارب للمنحني y=x مقارب للمنحني المعادلة عليه بين أن المستقيم ($t=-rac{1}{x}$
 - . $h(x) = \frac{1}{x} 1 + e^{-\frac{1}{x}}$ بالدالة العددية المعرفة على $0; +\infty$ على الدالة العددية المعرفة على ا

- $0;+\infty[$ على $\lim_{x \to +\infty} h(x)$ على $\lim_{x \to +\infty} h(x)$ أحسب و أدرس إتجاه تغير الدالة أ
- ب) تحقق أن $\mathsf{c}(\mathsf{C}_\mathsf{f})$ بالنسبة إلى ثم إستنتج الوظعية النسبية لـ $\mathsf{f}(\mathsf{x}) \mathsf{x} = (1+\mathsf{x})\mathsf{h}(\mathsf{x})$ بالنسبة إلى (Δ) المستقيم
 - . ($f(\alpha) \approx 1.73$ أرسم المستقيم (Δ) و المنحنى ($C_{\rm f}$) . (نأحذ Δ
- $\mathfrak{u}_n=rac{\mathfrak{n}}{\mathfrak{n}+1}\mathsf{f}\left(rac{1}{\mathfrak{n}}
 ight)-rac{\mathfrak{n}^2}{\mathfrak{n}+1}$ حيث: \mathfrak{u}_n متتالية عددية معرفة على \mathbb{N}^* بحدها العام \mathfrak{u}_n حيث (\mathfrak{u}_n)
- أ) أكتب \mathfrak{u}_n بدلالة \mathfrak{n} ثمّ بيّن أنّ المتتالية (\mathfrak{u}_n) هندسية يطلب تعيين أساسها و حدها
- $S_n = \left(\frac{1}{2}f(0) \frac{1}{2}\right) + \left(\frac{2}{3}f\left(\frac{1}{2}\right) \frac{1}{3}\right) + \left(\frac{3}{4}f\left(\frac{1}{3}\right) \frac{1}{4}\right) + \dots + \left(\frac{n}{n+1}f\left(\frac{1}{n}\right) \frac{1}{n+1}\right)$ حوث $f_k(x) = (x+1)^2e^{-kx}$ بكالوريا 2019 م التمثيل البياني للدالة f_k اليكن f_k التمثيل البياني للدالة f_k المعلم المتعامد و المنسوب إلى المعلم المتعامد المعام المتعامد و المنسوب إلى المعلم المتعامد و المنسوب المنسوب إلى المعلم المتعامد و المنسوب المعلم المتعامد و المعلم المتعامد و المنسوب المعلم المتعامد و المعلم المتعامد و المنسوب المعلم المتعامد و المنسوب المعلم المتعامد و المنسوب المعلم المتعامد و المنسوب المعلم المنسوب المعلم المنسوب المعلم المعلم المعلم المنسوب المعلم المنسوب ال

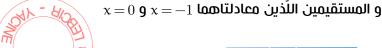
ليكن (\mathscr{C}_k) التمثيل البياني للدالة f_K في المستوي المنسوب إلى المعلم المتعامد و $\cdot \left(O; \overrightarrow{i}, \overrightarrow{j} \right)$ المتجانس

- . این أن کل المنحنیات $(\mathscr{C}_{\mathbf{k}})$ تمر من نقطتین ثابتتین یطلب تعیینهما 1
- . (K فاعش حسب قيم الوسيط الحقيقی f_{K} عند $-\infty$ و $-\infty$ ، . . $+\infty$ أحسب نهايتي الدالة f_{K}
 - . f_k أحسب ثم حدّد حسب قيم الوسيط الحقيقى $f_k'(x)$ أجباه تغير الدالة أ
 - ب) شكّل جدول تغيرات الدالة ${
 m f}_k$ من أجل ${
 m K}$ عدد حقيقي موجب تماما .
 - (\mathscr{C}_{k+1}) و (\mathscr{C}_k) ناقش حسب قيم الوسيط الحقيقى K الأوضاع النسبية للمنحنيين L
 - $f(x) = (x+1)^2 e^{-2x}$ الدالة المعرفة على \mathbb{R} بـ f II

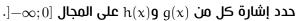
نسمى $(\mathscr{C}_{\mathrm{f}})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس $.(0;\overrightarrow{i},\overrightarrow{j})$

- $\left|-rac{3}{2};+\infty
 ight|$ شكل جدول تغيرات الدالة $_{\mathbf{f}}$ ، ثم أرسم المنحنى $(\mathscr{C}_{\mathbf{f}})$ على المجال 1
- $1,28\prec lpha\prec -1,27:$ أ) بيّن أنّ المعادلة f(x)=1 تقبل حلّين في $\mathbb R$ أحدهما lpha حيث

- ب) عيّن قيم العدد الحقيقي m التي من أجلها تقبل المعادلة : $|rac{x+1}{e^x}|=|rac{m+1}{e^m}|$ حلا وحيدا
 - $g(x)+(x+1)e^{-2x}$ الدالة المعرّفة على $\mathbb R$ بـ: g
- أ) بيّن أنّه من أجل كل عدد حقيقي x فإن: $g'(x)+2g(x)-e^{-2x}=0$ ثم إستنتج دالة أصلية لـ g على $\mathbb R$.
- $(\mathscr{C}_{\mathsf{f}})$ بإستعمال المكاملة بالتجزئة ، أحسب A مساحة الحيز المستوي المحدّد بالمنحنى ومحور الفواصل



- الدالتان العدديتان g و h معرفتان على المجال $[-\infty;0]$ كمايلي:
 - $h(x) = x(e^x + 1)$ **9** $g(x) = -2e^x$



- $f(x) = (x-3)e^x + rac{1}{2}x^2$ بالدالة العددية f معرفة على المجال $-\infty;0$ بالدالة العددية f
- (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (
 - $f'(x) = h(x) + g(x) :]-\infty;0]$ بين أنه من أجل كل x من المجال (۱)
 - $[-\infty;0]$ استنتج اتجاه تغير الدالة f على المجال (ب)
 - fدول تغیرات الدالة $\lim_{x \to -\infty} f(x)$ و f(0) احسب و الدالة أ
- $-1.5 \succ :$ يين أن المعادلة f(x)=0 تقبل حلا وحيدا lpha في المجال f(x)=0 ثم تحقق أن $lpha \succ -1.4$
 - $[-\infty;0]$ مو التمثيل البياني للدالة $x\mapsto rac{1}{2}x^2$ على المجال (P)
 - ا احسب $\lim_{x o -\infty} \left[\mathsf{f}(x) rac{1}{2} x^2
 ight]$ احسب (۱)
 - (C_{f}) و (P) ادرس الوضع النسبي بين المنحنيين (P)
 - $]-\infty;0]$ على المجال (P) ثم (ج) أنشئ (P) على المجال
- $|f(x)| = e^m :$ ليكن m وسيط حقيقي. ناقش بيانيا وحسب قيم m عدد حلول المعادلة m في المجال $[-\infty;0]$

بكالوريا 2021 م01

 $g(x) = (x^2 - 3)e^x + 3$ الدالة g المعرفة على \mathbb{R} ب: (I

- ادرس تغيرات الدالة g وشكل جدولا لتغيراتها. 1
- $1.53 \prec \alpha \prec 1.54$ بين أن المعادلة g(x)=0 تقبل حلا وحيدا α حيث (I) 2
 - (\mathbf{p}) احسب $\mathbf{q}(0)$ واستنتج إشارة $\mathbf{q}(\mathbf{x})$ حسب قيم \mathbf{x} .

$$\mathrm{f}(\mathrm{x})=3\mathrm{x}+1+(\mathrm{x}^2-2\mathrm{x}-1)e^{\mathrm{x}}$$
 الدالة العددية f المعرفة على $\mathbb R$ ب: II

 $(O; \vec{u}, \vec{v})$ تمثيلها البياني في المستوى المنسوب إلى معلم متعامد ومتجانس (C)

- $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب 1
- $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب $\lim_{x \to +\infty} f(x)$ عدد حقيقي $\lim_{x \to +\infty} f(x)$ ابين أنه من أجل عدد حقيقي $\lim_{x \to +\infty} f(x)$ (ا)
 - (ب) استنتج إتجاه تغير الدالة f
 - (ج) شكل جدولا لتغيرات f
- $-\infty$ بجوار (C) ابین أن المستقیم (Δ) ایبن أن المصادلة y=3x+1 المعادلة ((Δ)
 - (ب) ادرس وضعية (C) بالنسبة ل
- $2.03 \prec \beta \prec 2.04:$ جين أن (C) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها β حيث(C)
- (c) بین أن (c) یقبل مماسین ((T')و((T')) موازیان ل ((Δ)).(لا یطلب تعیین معادلة کل من ((T'))
 - $[-\infty; 1+\sqrt{2}]$ ارسم (Δ) و(T) ارسم (C)و(T') ارسم ((Δ) ($f(-\sqrt{3} \simeq -3.2 \text{ gf}(\sqrt{3}) \simeq -2.1 \text{ gf}(\alpha) \simeq -2.3 \text{ g} \alpha \simeq 1.53$ (d
 - $h(x) = f[\ln(x)]$ المعرفة على $0; +\infty$ ب $0; +\infty$ المعرفة على $0; +\infty$
 - $\lim_{x \to +\infty} h(x)$ و $\lim_{x \to 0} h(x)$ احسب (۱)
 - (ب) ادرس اتجاه تغير f وشكل جدولا لتغيراتها.

