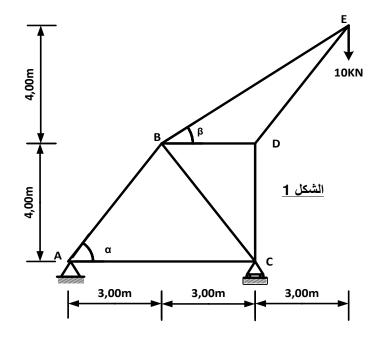
ثانوية : عبد المجيد علاهم/ المسيلة

القسم: 3 تقنى رياضى (هندسة مدنية)


<u>سلسلةرقم 7 تمارين الأنظمية المثلثية</u>

التمرين 93<u>--</u>

ليكن لديك النظام ألمثلثي المحمل كما هو موضح بالشكل (01). بحيث:

A : مسند مزدوج.

C مسند بسیط

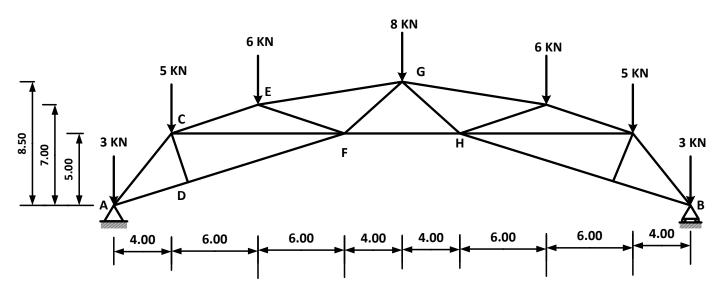
العام الدراسي : 2020\2020

الأستاذ: غلاب رابح

العمل المطلوب

1- تحقق من أن النظام محدد سكونيا.

2- احسب ردود الأفعال في المسندين A و C .

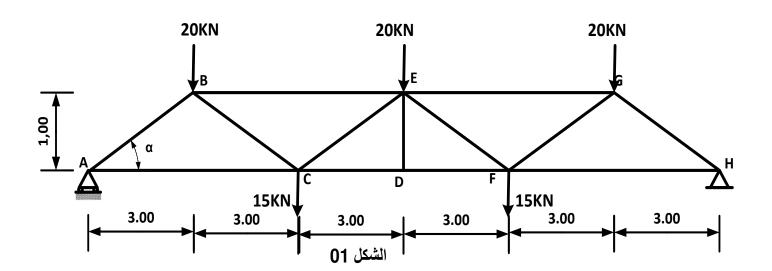

3- باستخدام الطريقة التحليلية (طريقة العقد) احسب الجهود الداخلية في القضبان مع تدوين النتائج في جدول.

4- استنتج القضيب الأكثر تحميلا ثم احسب مساحة المقطع اللازم اذا علمت أن الإجهاد الحدي المسموح به $\sigma = 1600 \, \mathrm{daN/cm^2}$.

<u>التمرين 94—</u>

لدينا جملة مثلثيه معدنية موضوعة على مسندين احدهما بسيط والثاني مضاعف والمحملة كما هو مبين في الشكل الميكانيكي التالي:

المسند A مضاعف المسند B بسيط.



المطلوب:

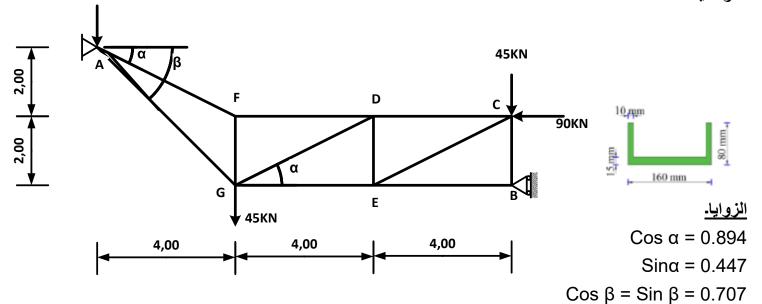
- 1 تحقق من شرط الاستقرار الهندسي
 - 2- احسب ردود الأفعال.
- 3. باستعمال طريقة عزل العقد احسب قيم القوى الداخلية في القضبان المرتبطة بالعقد: E, C, A وحدد طبيعتها . إذا علمت أن القضيب CD تركيي.
- $\bar{\sigma} = 2400 \, daN/cm^2$ هو الأكثر تحميلا إذا علمت ان الإجهاد المسموح به هو EG الأكثر تحميلا إذا
- $E=2.\,10^6 daN/cm^2$ هو: -5

التمرين 9**5**ــــ

تريد دراسة الهيكل المعدني المحدد سكونيا والمرتكز على المسندين A و H المبين في الشكل 01: (لاحظ التناظر)

يعطى:

 $\cos \alpha = 0.949 \quad \sin \alpha = 0.316$


العمل المطلوب:

- 1- أحسب ردود الأفعال في المسندين A و H
- 2- حدد الجهود الداخلية في القضبان وطبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول.
 - المسموح به $N_{CD}=240.00$ ، و الإجهاد المسموح به $\sigma=1600$ ، و الإجهاد المسموح به الفولاذ : $\sigma=1600$
 - 4- استخرج المجنب المناسب من الجدول علما أن مقطعة العرضي عبارة عن مجنب زاوي مضاعف.
 - 5- أحسب مقدار التشوه المطلق∆ للقضيب (CD) مع ذكر طبيعة التشوه.

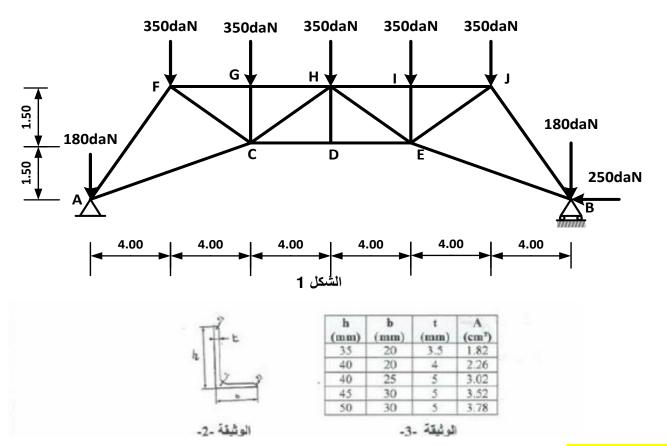
E=2*10⁶ dan/cm²

التمرين 96<u>--</u>

يكن لديك النظام المثلثي التابع لسطح الجسر في الشكل 1. يمثل الشكل 2 مقطع عرضي في القضبان الفو لاذية

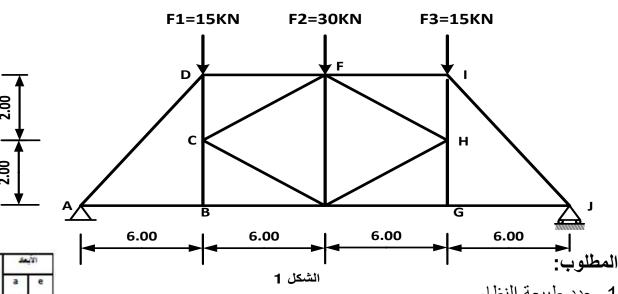
المطلوب:

- 1) احسب ردود الأفعال عند المسندين A و B
- 2) احسب الجهود الداخلية في القضبان بطريقة عزل العقد (مع رسم توضيحي لكل عقدة)
 - 3) دون الجهود في جدول مع توضيح طبيعة التحريض والشدة.
- $\overline{\sigma}$ = 90MPa و Nbe max =225KN احسب الإجهاد ألناظمي ألأعظمي أذا علمت أن
 - $E = 2x \ 10^5 MPa$ أحسب الاستطالة الأعظمية للمجنب إذا علمت أن (5)


<u>التمرين 97—</u>

الإنجاز مترو الأنفاق المال من بلدية واد السمار، تقرر انجاز ورشة مؤقتة (Hangar) لوضع العتاد المستعمل في البناء | الغاية انتهاء الأشغال، والتي تتكون من هياكل فولاذية تستقبل عناصر تغطية حديدية بصفتك طالب في الهندسة المدنية قسم 3 تقني رياضي طلب منك تحديد الخصائص الهندسية للقضبان المستعملة في هاته الورشة قدم لك الشكل الميكانيكي لإحدى الروافد في الوثيقة 1 اتبع الخطوات التالية وأعط حلا مفصلا

- 1) تأكد أن النظام محدد سكونيا داخليا.
- 2) أحسب ردود الأفعال عند المسندين.
- 3) أحسب الجهود الداخلية في القضبانAF, AC, FC, FG, GC, GH, CH, CD, DH في القضبان(3) مع رسم توضيحي لكل عقدة)
 - 4) استنتج الجهود الداخلية في بقية القضبان ثم دونها في جدول مبينا شدة وطبيعة القوى .
- 5) علما أن القضبان المستعملة هي مجنبات مضاعفة غير متساوية الأجنحة (انظر الوثيقة 2)، أحسب مساحة مقطع المجنب
 - 6) بالاعتماد على الجدول في الوثيقة 3 حدد الخصائص الهندسية للقضيب الأكثر تحميلا


ملاحظة : تؤخذ 3 أرقام بعد الفاصلة في الزوايا ورقمين بعد الفاصلة في كتابة النتائج

وحدة الطول هي المتر (m)

التمرين 98<u>-</u>

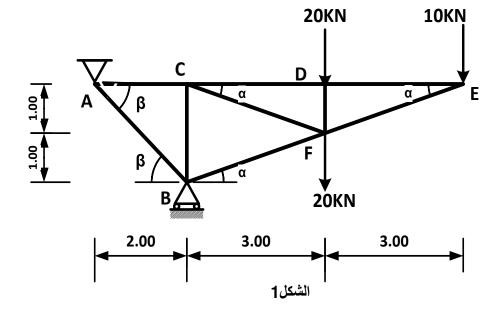
جسر عبارة عن نظام مثلثي حيت القضبان المستعملة فيه هي مجنبات على شكل حرف ل مقطعه الجانبي مجنب متساوي الأجنّحة مضّاعف الممثل بالشكل الميكانيكي (الشكل 01 يستند على مستدين (A) و (J) ـ الأول مضاعف و الثاني بسيط.

- 1. حدد طبيعة النظام
- 2. احسب ردود الأفعال في المستدين (A) و (J)
- 3. أحسب الجهود الداخلية في القضبان باستعمال طريقة عزل العقد
- 4 أحسب مقطع القضيب الأكثر إجهادا علما أن NAD =54.15KN مع اختيار المجنب المناسب. $\overline{\sigma} = 1600 \,\mathrm{daN/cm^2}$

a de cir.	المقطع	Attel)	الأبعك	
L	cm ²	kg/m	а	e
30×3	1.74	1.36	30	3
30×4	2.27	1.78	30	4
30×5	2.78	2.18	30	5
35×3	2.04	1.60	35	3
35×4	2.67	2.09	35	4
35×5	3.28	2.57	35	5
40×4	3.08	2.42	40	4
40×5	3.79	2.97	40	5
40×6	4.48	3.52	40	6

التمرين 99<u>—</u>

يبين الشكل رقم 1 نظاما مثلثيا، يرتكز على مسندين : A مسند مضاعف و B مسند بسيط.


تعطى:

cosα=0.948

 $\sin\alpha=0.316$

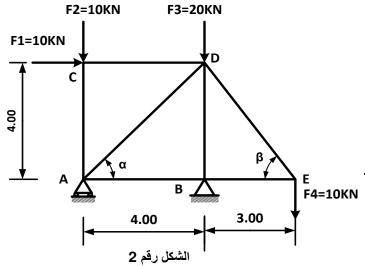
 $\cos\beta = 0.707$

sinβ=0707

العمل المطلوب:

- 1) تأكد أن النظام محدد سكونيا ثم احسب ردود الأفعال عند المسندين.
- 2) بالطريقة التحليلية (عزل العقد) احسب الجهود الداخلية للقضبان وبين طبيعتها ملخصا النتائج في جدول.
 - 3) يتكون النظام ألمثلثي من أنابيب معدنية كما هو موضح في المقطع العرضي ، إذا علمت أن:

- حدد من الجدول المرفق الأنبوب الذي يحقق المقاومة.


. eti	(mm	الأبعاد(الكثلة الخطية	المساحة	Wxx'
التعيين	D	t	(Kg/m)	(cm²)	(cm³)
48.3×2.5	48.3	2.5	2.82	3.60	3.92
48.3×3	48.3	3.0	3.35	4.27	4.55
60.3×2.5	60.3	2.5	3.56	4.54	6.3
60.3×3	60.3	3.0	4.24	5.40	7.37
76.1×2.5	76.1	2.5	4.54	5.78	10.3
76.1×3	76.1	3.0	5.41	6.89	12.1

التمرين 100—

الجدول المرفق

ليكن الشكل 02 عبارة عن نظام مثلثي كما هو موضح المطلوب:

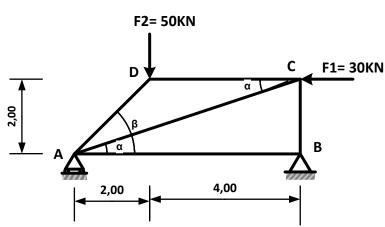
- 1- تأكد من طبيعة النظام
- 2- احسب ردود الأفعال في المستدين A و B
- 3- احسب الجهود الداخلية التي تؤثر على كل القضبان.
 - 4- لخص النتائج في جدول
- الما أن علما أن علما أن مسلحة مقطع القضيب الأكثر تحميلا علما أن $\overline{\sigma} = 1600 \, \mathrm{daN/cm^2}$ و $N_{\text{max}} = 48 \, \text{KN}$

6- اختر من الجدول المجنب المناسب

رقم	الكثلة المقطع		الأبعاد (mm)			
المجلب	cm ²	kg/cm ²	b = h	t	Ys = zs	
30x4	2.27	1.78	30	4	8.78	
35x4	2.67	2.09	35	4	10.00	
40x4	3.08	2.42	40	4	11.20	
40x5	3.79	2.97	40	5	11.60	

ا<mark>لتمرين 101—</mark>

يمثل الشكل نظاما مثلثيا محدد سكونيا تحت تأثير مجموعة من القوى يرتكز على مسندين A و B.


حيث : A : مسند بسيط

B : مسند مزدوج .

 $\cos \alpha = 0.9487$

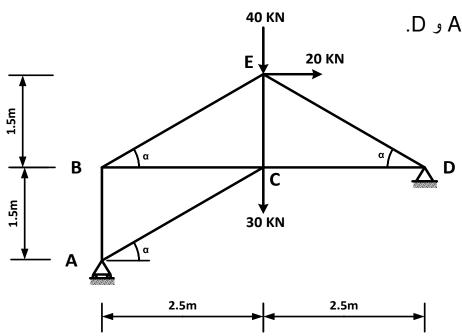
 $Sin\alpha = 0,3162$

 $Cos\beta = Sin\beta = 0,707$

المطلوب:

- 1. أحسب ردود الأفعال في المستدين A و .B
- 2. أحسب الجهود الداخلية في القضبان باستعمال الطريقة التحليلية (عزل العقد) مبينا طبيعتها ثم دون النتائج في جدول.
 - $N_{\rm max} = 70.71~{\rm KN}$ و $\sigma = 1600 {\rm daN/cm^2}$: نحقق من مقاومة القضبان إذا علمت أن: S = 4 . $44 {\rm cm^2}$. S = 4 .

التمرين 102—


مجموعة من القوي يرتكز على مسندين A و D. يمثل الشكل نظاما مثلثيا تحت تأثير

حیث : A مسند بسیط

D مسند مزدوج .

 $Cos \alpha = 0.857$

 $\sin \alpha = 0.514$

المطلوب:

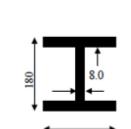
- 1) تأكد أن النظام محدد سكونيا.
- 2) احسب ردود الأفعال في المسندين .
- 3) حدد الجهود الداخلية في القضبان ثم دون النتائج في جدول مبينا شدة وطبيعة الجهود .
- 4) إذا كانت القضبان المستعملة في النظام ألمثلثي على شكل مجنب IPE والقضيب الأكثر تحميلا هو DE . NDE = 79 . 69 KN
 - و المسموح به σ = 1420daN / cm²

S (cm ²)	$W_{xx} = \frac{I_{xx}}{V}$	e (mm)	a (mm)	b (mm)	h (mm)	IPE
7.64	20	5.2	3.8	46	80	80
10.3	34.2	5.7	4.1	55	100	100
13.2	53	6.3	4.4	64	120	120

50 KN

4,00

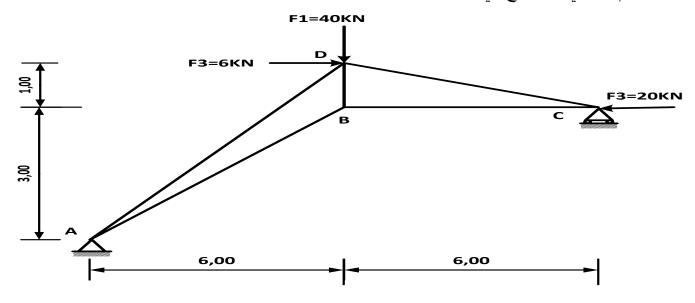
D


التمرين 103—

نريد دراسة النظام ألمثلثي على شكل (1) كما يوضح الرسم الميكانيكي التالي:

العمل المطلوب:

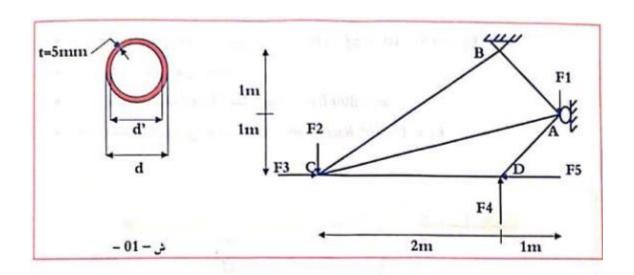
- 1) تأكد من هيئة النظام ألمثلثي .
- 2) أوجد قيم ردود الأفعال عند المسندين A وB.
- 3) أحسب قيم الجهود وطبيعة الداخلية المتماثلة في القضبان
 - 4) باستعمال الطريقة التحليلية (طريقة العقد)
- 5) تحقق من مقاومة مقطع القضيب المعدني الأكثر تحملا علما أن
 - $\overline{\sigma}_a = 1600 \text{ Kg/cm}^2$ Nmax=Nac=55.9 Kn


ملاحظة: أبعاد المجنب بالمليمتر

50 KN

تمرین 104<u>--</u>

در اسة النظام ألمثلثي الموضح في الشكل 3.


المطلوب

- 1. احسب ردود الأفعال عند المساند. A و C .
- 2- حدد الجهود الداخلية في كل القضبان (باستعمال الطريقة التحليلية) طريقة عزل العقد.
 - 3. دون النتائج في جدول مبينا شدة وطبيعة الجهود .
- 4- إذا كانت القضبان المستعملة في النظام ألمثلثي على شكل داعمة زاوية مزدوجة $\overline{\sigma} = 1600 \, \mathrm{daN/cm^2}$ استخرج من الجدول المجنب المناسب، إذا علمت أن الإجهاد المسموح به

<mark>تمرین 105__</mark>

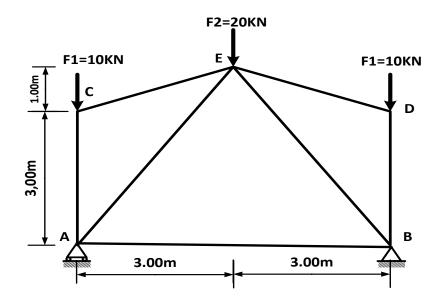
ليكن النظام المالي الموضح في الشكل أدناه، حيت (A) مسند بسيط و (B) مسند مضاعف كما يوضحه الشكل التالي، حيث:

F1 = 75KN , F2 = 100KN , F3 = 130KN , F4 = 150KN , F5 = 200KN

- 1. تأكد أن النظام المثلثي محدد سكونيا.
- 2. احسب قيم ردود الأفعال في المسندين (B), (B).
- 3. احسب قيم الجهود الداخلية في القضبان مع تحديد طبيعتها، ثم دون النتائج في جدول.
- 4. إذا علمت أن جميع قضبان النظام المثلثي متشابهة المقطع دائرية مفرغة بقطر خارجي d و قطر d و قطر d داخلي d و سمك d عيث: d حيث: d عيث: d

 $S = \pi/4(1-2 \text{ d})\text{cm}^2$ أ/ بين أن مساحة مقطع القضيب الأكثر تحميلا:

ط' القطر الخارجي d و القطر الداخلي 'd

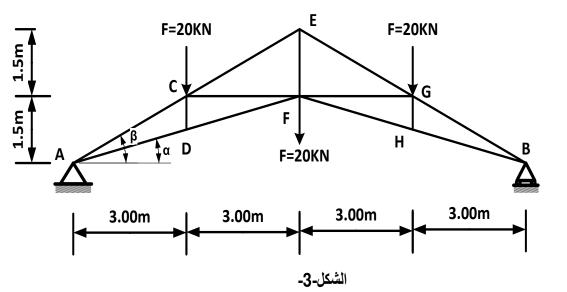

ج/ أستنتج مساحة مقطع القضيب S.

د / أحسب الاستطالة △L للقضيب الأكثر تحميلا، بين نوعها، ثم أستنتج الاستطالة النسبية.

<u>تمرین 106—</u>

ليكن النظام المثلثي المحدد سكونيا و المبين في الشكل (2) .

(A): المسند بسيط و (B) المسند مضاعف .


المطلوب:

- 1) أحسب ردود الفعل عند المساند.
- 2) احسب الجهود الداخلية في القضبان مع تحديد طبيعة الجهد وتدوين النتائج على جدول .
- $\stackrel{-}{\sigma}$ = 1000daN/cm² و NAE=12.5 KN : علما أن الجهد الداخلي $N_{AE}=12.5$ و $N_{AE}=1000$ و $N_{AE}=12.5$ و مقطعه العرضي عبارة عن مجتب (5 $N_{AE}=4.8$ مساحته $N_{AE}=4.8$
- 4) احسب قيمة التقلص المطلق عماد للقضيب AE علما أن معامل المرونة الطولي E=2.1*106dan/cm² تمرين 106—

بین الشکل (03) نظاما متلتیا متناظرا محددا سکونیا ، قضبانه مجنبات زاویة مزدوجة (الم و پرتکز علی مستدین : A مسند مزدوج و B مسند یسیط

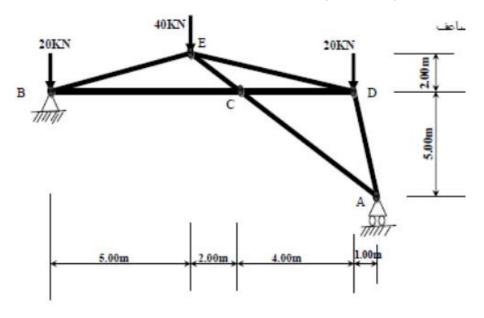
العمل المطلوب:

- 1. أحسب ردود الأفعال عند المسندين A وB.
- 2. باستعمال الطريقة التحليلية (عزل العقد)، أحسب الجهود الداخلية في قضبان الهيكل و عين طبيعتها . (تدون النتائج المحصل عليها في جدول)
- 3. إذا علمت أن $\overline{\sigma} = 1600 \, \mathrm{daN/cm^2}$ و الإجهاد المسموح به $\overline{\sigma} = 1600 \, \mathrm{daN/cm^2}$ و حدد من الجدول المرفق مقطع المجنب الزاوي اللازم و الكافي لتحقيق شرط المقاومة.

 $Co\alpha = 0.970$

Sin α = 0.243

 $Cos\beta = 0.894$


 $Sin\beta = 0.447$

التعيين	الأبعاد		المقطع	بالنسبة لـ xx'	
L	a (mm)	e (mm)	S (cm²)	Lxx (cm ⁴)	(cm ³)
30×30×3	30	3	1,74	1.4	0,65
35×35×3,5	35	3,5	2,39	2,66	1,06
40×40×4	40	4	3,08	4,47	1,55
45×45×4,5	45	4,5	3,9	7.15	2,2
50×50×5	50	5	4.5	10,96	3,05
60×60×6	60	6	6,91	22,79	5,29
70×70×7	70	7	9,4	42,3	8,41
80×80×8	80	8	12,27	72,25	12,58

<mark>تمرین 107</mark>

تريد دراسة هيكل معدني على شكل نظام ملتى تحت تأثير قوى مركزة والذي يرتكز على مسندين (A) و (B) حيث:

(A) مسند بسيط (B) مسند مضاعف (الشكل 1-)

العمل المطلوب:

1- تأكد من أن الهيكل محدد سكونيا-

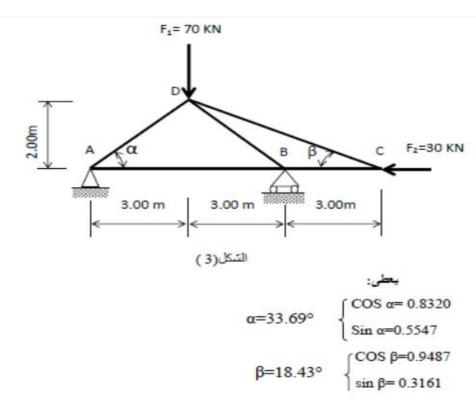
2- أحسب ردود الأفعال عند المسندين (A) و (B)

3. أحسب الجهود الداخلية في القضبان معيين طبيعتها باستخدام طريقة عزل العقد.

4- دون النتائج في جدول.

 $\overline{\sigma}$ = 1600daN/cm² و NED= 75,10kN: من الجدول المرفق.

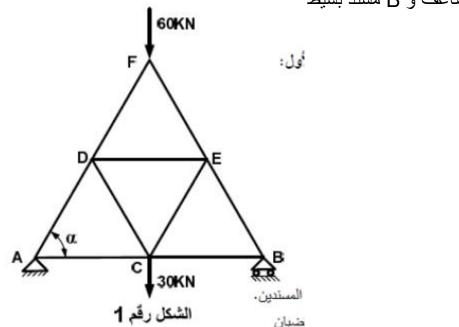
6- أحسب قيمة التقلص المطلق للقضيب AC، علما أن معامل المرونة الطولي E =200000N/mm²


<mark>تمرین 108—</mark>

دينا نظام مثلثي تحت تأثير قوى مركزة والذي يرتكز على مسندين حيث:(A) مضاعف و (B) بسيط أنظر الشكل (3)

العمل المطلوب:

- 1) أحسب قيم ردود الأفعال عند المستدين (A) و (B).
- 2)أحسب الجهود الداخلية للقضبان التالية: AD، CD AB و حدد طبيعتها بطريقة عزل العقد
 - 3) دون النتائج في جدول.


AD إذا كانت جميع القضبان متشابهة المقطع حيث: $S_{AE}=4.48 cm^2$ تحقق من مقاومة القضيب AD . علما أن: $N_{AD}=63.10~KN$ و $\sigma=1600 daN/cm^2$

تمرين 109__

يبين الشكل رقم 1 نظاما مثلثيا مشكل من قضبان متساوية الطول (L=3m).

یرتکز علی مسندین: A مسند مضاعف و B مسند بسیط

تعطى:

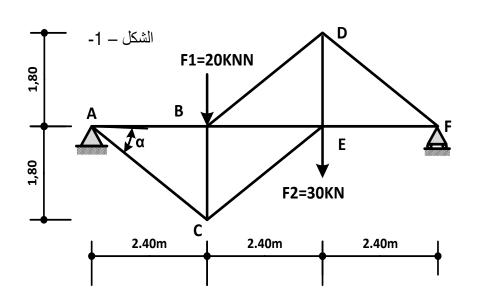
 $\cos\alpha = 0.5$

 $sin\alpha=0.866$

العمل المطلوب:

- 1) تأكد أن النظام محدد سكو لهيا ثم احسب ردود الأفعال عند المسندين.
- 2) بالطريقة التحليلية (عزل العقد) احسب الجهود الداخلية للقضبان وبين طبيعتها ملخصا النتائج في جدول.
 - 3) يتكون النظام ألمثلثي من مجنبات زاوية متساوية الجناحين مزدوجة الله

$\overline{\sigma} = 1600 \text{daN/cm}^2$ و N_{max}= 51,96 KN: إذا علمت أن


- حدد من الجدول المرفق المجنب الذي يحقق المقاومة. الجدول المرفق

المقطع	الكتلةالخطية	الأبعاد (mm)		
(cm ²)	(Kg/m)	b	a	التغيين
1.13	0.88	3	20	3×20×20
1.43	1.12	3	25	3×25×25
1.74	1.36	3	30	3×30×30
2.35	1.84	3.5	35	3.5×35×35
3.08	2.42	4	40	4×40×40

 $E = 2x10^6 \, daN / cm^2$ أحسب التشوه الحاصل في القضيب الأكثر تحميلا علما أن (4 ملاحظة: نأخذ مساحة مقطع المجنب المختار)

<u>تمرین 110—</u>

ليكن النظام المثلثي المحدد سكونيا والمرتكز على المسندين A و F كما هو مبين في الشكل 01:

$\cos \alpha = 0.800$ $\sin \alpha = 0.600$

المطلوب

- 1- أحسب ردود الأفعال عند المسندين A وF.
- 2- أحسب الجهود الداخلية في القضبان و بين طبيعتها اعتمادا على الطريقة التحليلية دون النتائج في جدول.
 - 3- إذا علمت أن القضيب الأكثر تحميلا هو القضيب (ED) حيث :Ned= 53 ,4 KN وقطره 4cm.
 - $E=2 \times 10^6 \text{Kg/cm}^2$: احسب استطالة القضيب علما أن
 - $\sigma = 1600 \, \mathrm{daN/cm^2}$: تحقق من شرط المقاومة علما أن الإجهاد المسموح به