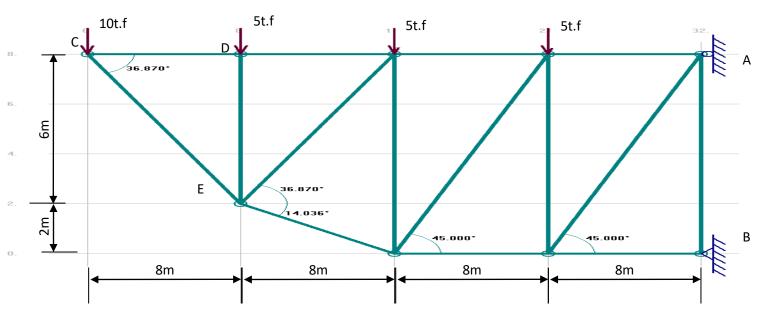
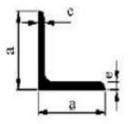
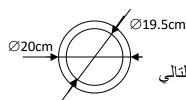
ثانوية : عبد المجيد علاهم/ المسيلة

القسم: 3 تقني رياضي (هندسة مدنية)


<u>سلسلةرقم 5 تمارين الأنظمية المثلثية</u>

التمرين – 60 –


ملاحظة الوحدة المستعملة للقوى الخارجية هي t.f

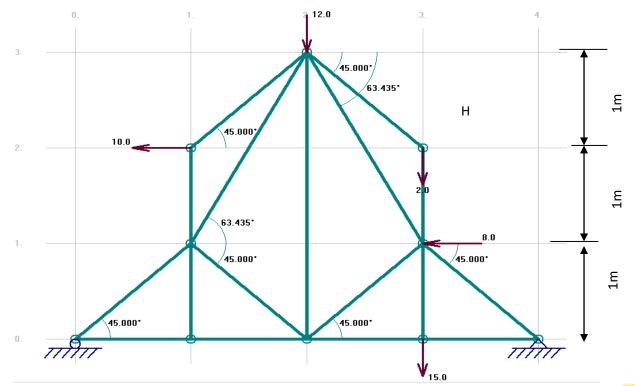

لتكن الجملة المثلثية التالية مقطعها الجانبي مجنب بجناحين متساوبين كما هو مبين الله

- أحسب الجهود الداخلية في كل قضيب متصل بالعقد E;D;C
- . $\overline{\sigma} = 1600 \, dan / \, cm^2$ و $N_{\text{max}} = 70 \, t.f$ و احسب أبعاد مقطع القضيب علما أن
 - باستخدام جدول المجنبات أوجد المجنب المناسب ـ

المقط و 2	الكتلة kg/m	بعاد	الأو
المقطع cm ²	kg/m - www.	е	а
15.5	12.2	8	100
19.2	15.0	10	100
22.7	17.8	12	100
27.9	21.9	15	100

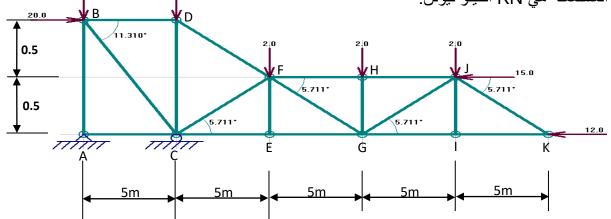
العام الدراسي: 2021\2020

الأستاذ: غلاب رابح


<u> التمرين – 61 –</u>

1 لتكن الجملة المثلثية التالية مقطعها الجانبي أسطواني كما هو مبين في الشكل التالي

- أحسب الجهود الداخلية في كل قضيب متصل بالعقد A;B;I;C;D;G.
- 2. علما أن القضيب HG يتأثر بجهد داخلي للشد N=15KN و معامل المرونة الطولي


.E=20000daN/mm²

• أحسب استطالة هذا القضيب

<u>التمرين – 62 –</u>

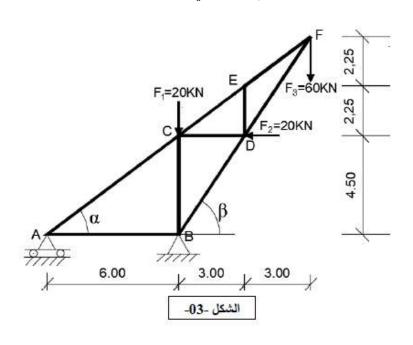
مدرجات ملعب مغطى بنظام مثلثي مقطعها معدني على شكل حرف ا مجنب (IPE) ممثل برسمه الميكانيكي التالي التالي الوحدة المستعملة هي KN الكيلو نيوتن:

1. أحسب ردود الأفعال في المسندين A و C.

 $V_{C}=25.5KN$ و $V_{A}=4.5KN$ و $V_{A}=4.5KN$ و $V_{C}=25.5KN$ و $V_{A}=4.5KN$ و $V_{C}=25.5KN$ و $V_{C}=25.5KN$ و $V_{C}=4.5KN$

- تأكد من أن النظام محدد سكونيا داخليا و خارجيا.
- أحسب الجهود الداخلية في كل من القضبان KI, KJ, AB, AC مع ذكر نوع التأثير.
- 3.علما أن القضيب الأكثر إجهادا BC يتعرض إلى تأثير انضغاط N_{BC} =73.94KN و الإجهاد المسموح به $ar{\sigma}$ =600daN/cm².

- أحسب مساحة المقطع الآمنة.
- استنتج رقم المجنب المناسب.


			ن للانحناء cm³	معامل المقاومة
رقم المجنب	الكتلة kg	مساحة المقطع cm ² A	$\mathbf{w_x} = \frac{I_X}{V_X}$	$\mathbf{W_Y} = \frac{I_Y}{V_Y}$
IPE 100	8.1	10.3	34.2	5.79
IPE 120	10.4	13.2	53.0	8.65
IPE 140	12.9	16.4	77.3	12.3
IPE 160	15.8	20.1	109	16.7
IPE 180	18.8	23.9	146	22.2

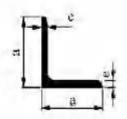
التمرين -63 -

لتصميم رافعة في ورشة بناء نقترح الهيكل ألمثلثي المحدد سكونيا الذي يرتكز على المسندين : A مسند بسيط و B مسند مضاعف والخاضع لتأثير القوى المركزة. F:F:F:F كما هو ممثل بالرسم الميكانيكي الشكل -03-

يعطى:

$$cos(\alpha) = 0.8$$

 $sin(\alpha) = 0.6$
 $cos(\beta) = 0.555$
 $sin(\beta) = 0.832$


المطلوب:

- 1) احسب ردود الأفعال في المسندين A و B .
- 2) اعتمادا على الطريقة التحليلية (عزل العقد) احسب الجهود الداخلية في القضبان محددا طبيعتها مع تلخيص في جدول .
 - 3) يتكون النظام ألمثلثي من مجنبات زاوية مزدوجة (الله علمت أن: Nmax = 144KN

 $\overline{\sigma} = 1600 \,\mathrm{daN/cm^2}$ و الإجهاد المسموح به

حدد من الجدول المرفق المجنب الزاوي اللازم والكافي لتحقيق المقاومة .

المجنب	بعاد	M	المقطع (cm²)
المجب	a (mm)	e (mm)	المعطع (۱۱۱۱)
20×20×3)	20	3	1.12
25x25x3)	25	3	1.42
30x30x3)	30	3	1.74
40x40x4)	40	4	3.08
50x50x5)	50	5	4.80
60x60x6)	60	6	6.91

الجدول المرفق

التمرين – 64 –

F:F:F مسند مزدوج و B مسند بسيط والخاضع لتأثير القوى المرتكز على المسندين A: مسند مزدوج و

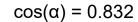
1.50

F3=30KN

F=20KN

F₂=30KN

1.50


1.50

الشكل -03

F-20KN

2.25

كما هو مبين بالرسم الميكانيكي الشكل -03-.

$$sin(\alpha) = 0.555$$

$$\cos(\beta) = 0.949$$

$$\sin(\beta) = 0.316$$

المطلوب:

- 1) تأكد من سكونية الهيكل .
- 2) احسب ردود الأفعال في المسندين A و .B
- 3) اعتمادا على الطريقة التحليلية (عزل العقد) احسب الجهود الداخلية في القضبان محددا طبيعتها مع تلخيص

النتائج في جدول .

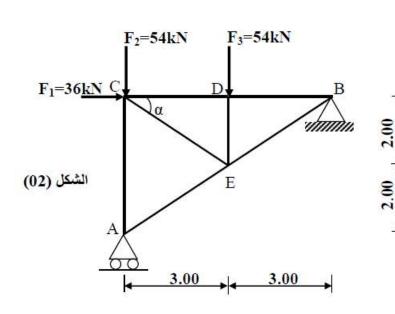
Nmax = 40KN: مفردة إذا علمت أن (L) مغردة عن مجنبات زاوية (L) مفردة إذا علمت أن $\overline{\sigma} = 1600 \, \mathrm{daN/cm^2}$ و الإجهاد المسموح به $\sigma = 1600 \, \mathrm{daN/cm^2}$

حدد من الجدول المرفق المجنب الزاوي اللازم والكافي لتحقيق المقاومة.-

	ماد	الأب	المقطع	
المجنب L	a mm	e mm	المقطع Cm²	
$(20\times20\times3)$	20	3	1,12	
$(25 \times 25 \times 3)$	25	3	1,42	ita .
(30×30×3)	30	3	1,74	
$(40\times40\times4)$	40	4	3,08	a
$(50 \times 50 \times 5)$	50	5	4.80	
$(60\times60\times6)$	60	6	6,91	

التمرين – 65 –

يمثل الشكل (02) نظاما مثلثيا محدد سكونيا. بحيث:


• المسند A: بسيط

. المسند B: مضاعف

يعطى:

 $Cos \alpha = 0,8320$

 $\sin \alpha = 0.5547$

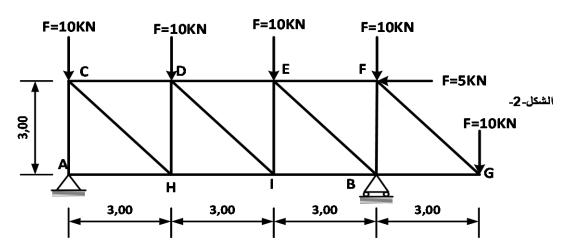
ألمطلوب:

- 1) أحسب ردود أفعال المسندين A و B
- 2) أحسب الجهود الداخلية في القضبان و عين طبيعتها باستعمال الطريقة التحليلية (عزل العقد) مع تدوين النتائج في جدول
 - 3) إذا كان القضيب الأكثر تحميلا تحت تأثير جهد ناظمي Nmax=81KN
 - . $\overline{\sigma} = 1600 \text{daN/cm}^2$ و الإجهاد ألناظمي المسموح به

حدد من الجدول المرفق المجنب الزاوية المناسب الذي يحقق شرط المقاومة.

ملاحظة : تتشكل قضبان النظام ألمثلثي من مجنبات زاوية مضاعفة -

رقم المجنب	المساحة(cm ²)	(mm)	الأبعاد(
رهم المجتب	(cm)-cause	a	e
20x20x3	1.12	20	3
25x25x3	1.42	25	3
30x30x3	1.74	30	3
40x40x4	3.08	40	4
50x50x5	4.80	50	5
60x60x6	6.91	60	6


الجدول المرفق

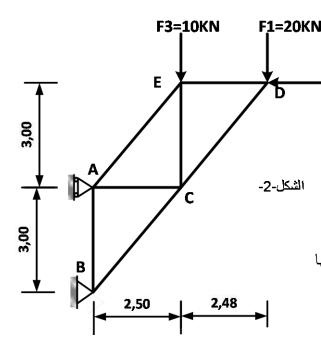
<u>التمرين – 66 –</u>

يمثل الشكل (02) نظاما مثلثيا بحيث:

• المسند B : بسيط

. المسند A: مضاعف

العمل المطلوب:

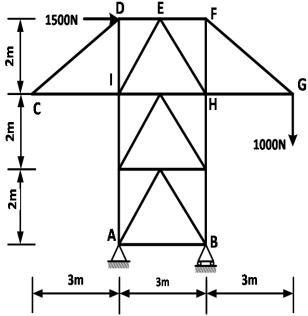

- 1) تأكد من أن النظام محدد سكونيا .
- 2) أحسب ردود الأفعال في المسندين A و B
- 3) أحسب الجهود الداخلية في جميع القضبان محددا طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول.
 - 4) أحسب مساحة مقطع القضيب الأكثر تحميلا NFB=20KN و الإجهاد الناظمي المسموح به هو

 $^{.\}overline{\sigma} = 1600 \,\mathrm{daN/cm^2}$

التمرين – 67 –

ليكن النظام ألمثلثي المبين في الرسم الميكانيكي على الشكل -2

حيث : (A) : مستند بسيط (B) : مسند مضاعف (مزدوج)


العمل المطلوب:

- 1) تأكد من أن النظام محدد سكونيا
- 2) أحسب ردود الأفعال في المسندين A و B
- 3 أحسب الجهود الداخلية في جميع القضبان محددا طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول

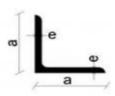
التمرين _ 68 _

يمثل الشكل المقابل نظاما مثلثيا مكونا من قضبان زاوية مزدوجة تحت تأثير حمو لات مركزة ومستندا على مسندين: A: مسند مزدوج /B: مسند بسيط

F2=15KN

المطلوب:

- 1) تحقق من طبيعة النظام.
- 2) أحسب ردود الأفعال في المسندين A و B
- 3) أحسب الجهود الداخلية في القضبان المتلاقية في


النقاط C ،D ،E ، F النقاط النقاط C ،D ،E ،

- 4) معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول.
 - و إذا علمت أن القضيب الأكثر تحميلا

. Nmax = 5000dan: №

- حدد المجنب الزاوي اللازم و الكافي للمقاومة
- $\overline{\sigma} = 1500 \, \text{daN/cm}^2$ من الجدول المرفق، إذا علمت أن الإجهاد المسموح به
- L=2m نحميلا علما أن ΔL القضيب الأكثر (Nmax = 5000dan) تحميلا علما أن $E = 2 \cdot 1 \times 10^6 \, dan / cm^2 \, "_{e}$

Luizall	غاد	الأبًا	المقطع
	a (mm)	e (mm)	(cm ²)
(20x20x3)	20	3	1.12
(25x25x3)	25	3	1.42
(30x30x3)	30	3	1.74

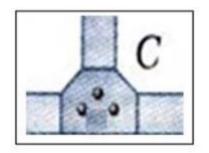
<u>التمرين – 69 –</u>

من أجل تغطية الورشة استخدم غطاء على شكل نظام مثلثي حيث, B مسند بسيط و A مسند مزدوج

المطلوب

1سم العقد ورقم القضبان.

- 2. هل النظام محدد سكونيا ؟
- في حال العكس اقترح حلا يحافظ على تناظر النظام.
 - 3. احسب ردود الأفعال على المساند .
 - 4. هل النظام متناظر؟
 - 5. احسب الجهود الداخلية لكل القضبان.
 - مع بيان طبيعتها وكتابة النتائج في جدول
 - 6. إذا كانت القضبان على شكل مجنبات.


 $\overline{\sigma} = 1600 \, daN/cm^2$: أوجد المجنب المناسب من الجدول إذا علمت أن

7. تثبت القضبان في العقدة C بثلاث براغي كما هو موضح في الشكل احسب القطر الضروري لكل برغي

 $T = 900 \text{ kg/Cm}^2$

. إذا كانت المجنبات من نوع 3*30*30 احسب التشوه في القضيب AC محددا طبيعته.

 $E = 2.1 \times 10^6 \, kg/cm^2$

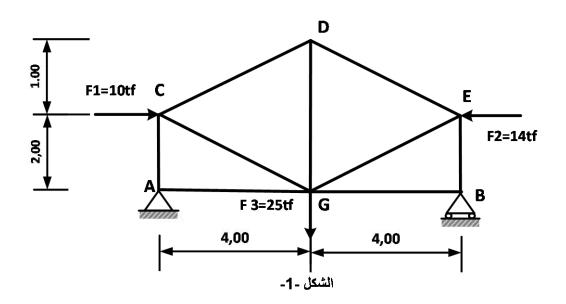
20KN

2,00

20KN

2,00

20KN


2,00

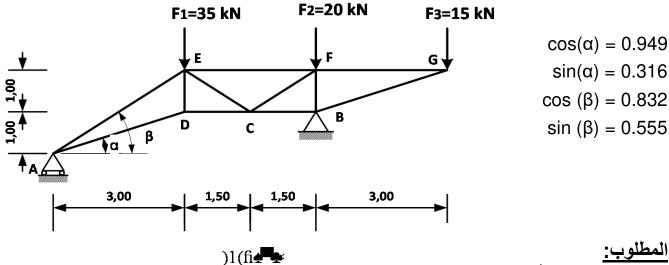
الساحة (cm²)	المجنب 🎩
3.48	3x30x30
6.16	4x40x40
9.60	5x50x50
13.82	6x60x60

التمرين – 70 –

يمثل الشكل 1 نظاما مثلثيا محدد سكونيا تحت تاثير قوى يرتكز على مسندين (A) و (B) . حيث:

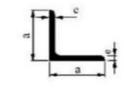
(A) مسند مضاعف (مزدوج) ، (B) مسند بسيط.

ألعمل المطلوب:


- 1. أحسب قيم ردود الأفعال في المسندين (A) و (B).
- د. أحسب الجهود الداخلية للقضبان مع تعيين طبيعتها مستعملا الطريقة التحليلية (عزل العقد تم دون النتائج في جدول).
 - -. إذا كانت القضبان المستعملة في النظام المثلثي هي مجنبات زاوية متساوية الأجنحة مزدوجة ــــ
 - $\overline{\sigma} = 360 \text{MPa}$ أ. استنتج نوع المجنب المناسب من (الجدول-1-) علما أن
 - $E = 2 \times 10^6 \, dan / cm^2$ ب. احسب قيمة التقلص ΔL للقضيب
 - ج. يتم ربط القضيب EB في العقدة E ببر غبين (02) بواسطة صفيحة جامعة أحسب قطر البراغي، علما أن T = 60MPa

البراغي التجارية أقطارها: 33mm . 30 - 27. 24. 22 . 20 - 18. 16.

التمرين – 71 –

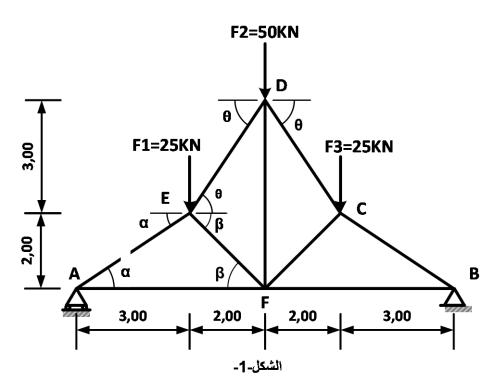

لتصميم غماء موقف سيارات نقترح الهيكل المثلثي المحدد سكونيا الذي يرتكز على المسندين: A مسند بسيط و B مسند مضاعف الممثل بالرسم الميكانيكي الشكل -03

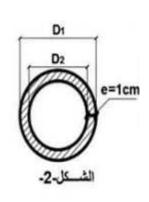
يعظي:

- 1) احسب ردود الأفعال في المسندين A و B
- 2) اعتمادا على الطريقة التحليلية (عزل العقد) احسب الجهود الداخلية في القضبان محددا طبيعتها مع تلخيص النتائج في جدول .
 - $N_{max} = 47$, 47KN : إذا علمت أن إدا عرب أن مجنبات زاوية مزدوجة (1) النظام المثلثي من مجنبات زاوية مزدوجة $\overline{\sigma} = 1600 \text{daN/cm}^2$ و الإجهاد المسموح به
 - حدد من الجدول المرفق المجنب الزاوي اللازم و الكافي لتحقيق المقاومة:

المجنب ا	بعاد	וצו	/cm²\ 1: 1
المجنب ١	a (mm)	e (mm)	لمقطع (cm ²)
(20×20×3)	20	3	1.12
(25x25x3)	25	3	1.42
(30x30x3)	30	3	1.74
(40×40×4)	40	4	3.08
(50x50x5)	50	5	4.80
(60x60x6)	60	6	6.91

الجدول المرفق


<u>التمرين – 72 –</u>

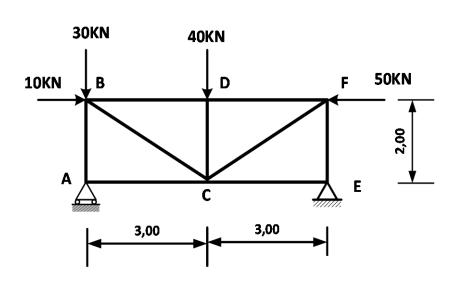

ليكن النظام ألمثلثي المتناظر المبين في الرسم الميكانيكي على الشكل -3. حيث (A) مسند بسيط و (B) مسند مضاعف (مزدوج)، تعطى:

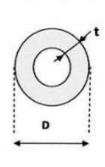
 $\cos \alpha = \sin \gamma = 0.832$

 $\cos \gamma = \sin \alpha = 0.555$

 $\cos \beta = \sin \beta = 0.707$

العمل المطلوب:

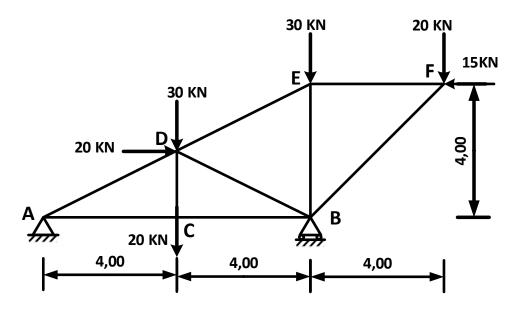

- 1) تأكد من أن النظام محدد سكونيا.
- 2) أحسب ردود الأفعال في المسندين A و B
- 3) أحسب الجهود الداخلية في جميع القضبان محددا طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول.
- 4) إذا علمت أن كل القضبان فو لاذية مقطعها دائري مفرغ كما هي موضحة في الشكل -2- و مساحة القضيب الأكثر تحميلا S=9.43cm² ، أحسب قيم الأقطار D_2 و D_3


<u>التمرين – 73 –</u>

ليكن النظام المثلثي الموضح في الشكل الميكانيكي الموالي:

المسند: A بسيط

المسند : E مزدوج (مضاعف)

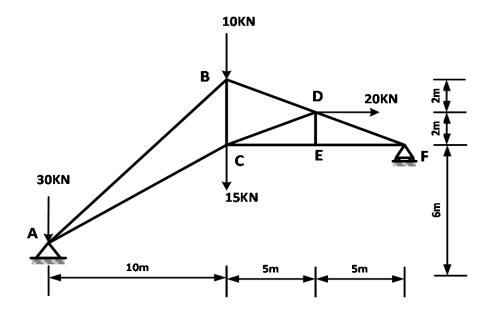


العمل المطلوب

- 1. تأكد من أن النظام محدد سكونيا واحسب ردود الأفعال عند المسندين.
- 2. اوجد الجهود الداخلية للقضبان باستعمال الطريقة التحليلية (عزل العقد) وبين طبيعتها ثم دون النتائج في جدول
- 3. اذا علمت أن القضبان عبارة عن أنابيب معدنية مقطعها موضح في الشكل اعلاه وان القضيب الأكثر تحميلا يتعرض لجهد انضغاط بقيمة $\overline{\sigma} = 2400 \, \mathrm{daN/cm^2}$: حدد من الجدول المرفق الأنبوب الذي يحقق شرط المقاومة

<u>التمرين – 74 –</u>

نظام مثلثي مكون من قضبان زاوية (مضاعف) شكله الميكانيكي مبين أدناه

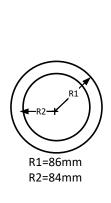

المطلوب:

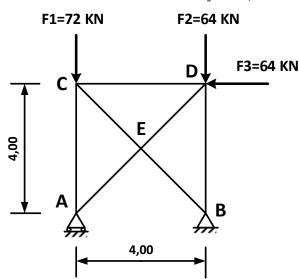
- 1. بين أن النظام محدد سكونيا
- 2. أحسب ردود الفعل في المسندين A و B
- S]. أحسب الجهود الداخلية في القضبان للنظام المثلثي باستعمال الطريقة التحليلية (عزل العقد) 4. دون النتائج في جدول N = 67.08 لذا كان القضيب الأكثر تحميلا يتحمل قوة قدر ها N = 67.08 و الإجهاد المسموح به
 - ستخرج الجنب المناسب من الجدول $\overline{\sigma} = 1400 \, daN/cm^2$

رقم	المقطع	الكتلة	JA	M
المجنب	cm ²	kg/m	а	e
30×3	1.74	1.36	30	3
30×4	2.27	1.78	30	4
30×5	2.78	2.18	30	5
35×3	2.04	1.60	35	3
35×4	2.67	2.09	35	4
35×5	3.28	2.57	35	5
40×4	3.08	2.42	40	4
40×5	3.79	2.97	40	5
40×6	4.48	3.52	40	6

<u> التمرين – 75 –</u>

نريد دراسة هيكل معدني على شكل نظام مثلثي تحت تأثير قوى مركزة و المبين برسمة الميكانيكي و الذي يركز على مسندين حيث: A مسئد مضاعف (مزدوج) و F مسند بسيط.




المطلوب:

- 1. تأكد من أن الهيكل محدد سكونيا.
- 2. احسب ردود الأفعال في المسندين A و F.
- 3. احسب الجهود الداخلية في القضبان مع تعيين طبيعتها باستخدام طريقة عزل العقد.
 - 4. دون النتائج في جدول.
- 5. اذا كان القضبان (AC) يخضع إلى قوة شد $N=71.11~{\rm KN}$ والذي ينتج فيه جهد أعظمي و الإجهاد المسموح به . $\overline{\sigma}=1000{\rm daN/cm^2}$

التمرين- 76—

ليكن النظام المثلثي حيث B: مسند مضاعف و A: مسند بسيط و الممثل بالرسم التالي:

المطلوب:

- 1. تأكد من أن النظام المقترح محدد سكونيا.
 - 2. أحسب ردود الأفعال عند المسندين.
- 3. أوجد شدة وطبيعة القوى في القضبان باستعمال طريقة العقد ثم دون النتائج في جدول .
- 4. إذا علمت أنه تم استعمال قضبان ذات مقاطع دائرية مجوفة كما هو موضح على الرسم التالي، تحقق من مقاومة القضبان حيث الإجهاد المسموح به $\overline{\sigma} = 1400 \, {
 m Kgf} \, / {
 m cm}^2$