مجلة المتفوق في الرياضيات بكالسوريسا 2022

جزء الواجبات المنزلية رفقة التصحيح

للشعب: علوم تجريبية + تقني رياضي + رياضيات

من إعداد الاستاذ ياحي رشيد (استاذ محاضر بجامعة المسيلة)

© للتواصل معنا 0656836024 (C

Facebook: Rachidyahiyahi

نشر الأسئلة تم يوم 19.08.2021

من إعداد الأستاذ ياحي رشيد رقم الهاتف: 0656836024

الواجب المنزلي رقم 01: حول تحديد اشارة عبارة جبرية

ثم حدد حسب قيم x إشارة $f(x)$ في الحالات التالية	f(x)	التمرين $oldsymbol{01}_{f}$ المعادلة D_f حل في D_f (مجموعة تعريف f) المعادلة D_f	
$f(x) = -3x^2 + 2x - 4$	(10	f(x) = -3x - 6	(1
$f(x) = x^2 - 5x + 6$	(11	$f(x) = \frac{1}{x-2}$	(2
$f(x) = \frac{x^2 + 4x + 4}{(x+1)^2}$	(12	$f(x) = 2 + \frac{1}{x+3}$	
$f(x) = \frac{x-1}{(x+1)^2}$	(13	$f(x) = x^2 - 36$	(4
$f(x) = -1 + \frac{1}{(x+2)^2}$	(14	$f(x) = 2x^2 - 1$	(5
		$f(x) = x^2 + 6$	(6
$f(x) = \frac{-x^3 + 5x^2 - 6x}{(x+3)^3}$	(15	$f(x) = x^2 - 9x$	(7
(11 1 3)		$f(x) = 8x^3 - 4x^2$	(8
$f(x) = \frac{(x-3)(x^2 - 3x + 2)}{(x+4)^3}$	(16	$f(x) = 3x^2 + 7x + 8$	(9

من إعداد الأستاذ ياحي رشيد وقم الهاتف: 0656836024

المنزلي رقم 01 : حول تحديد اشارة عبارة جبرية الله عبارة جبرية

حل التمرين 01

x	$-\infty$ $-\frac{7}{2}$ -3 $+\infty$
2x + 7	- 0 + +
x + 3	0 +
$\frac{2x+7}{x+3}$	+ - 0 +

تعني f(x) = 0 لدينا $f(x) = x^2 - 36$ (4 x = 6 وبالتالي $x^2 = 36$ أي $x^2 - 36 = 0$ أو x = -6 ومنه حلول المعادلة x = -6 هي x = -6 و إشارة x = -6 هي x = -6 و إشارة x = -6

x	$-\infty$	-6	6	$+\infty$
$x^2 - 36$	+	0 -	0	+

تعني f(x) = 0 لدينا $f(x) = 2x^2 - 1$ رقعني $x = -\frac{1}{\sqrt{2}}$ وبالتالي $x^2 = \frac{1}{2}$ رأو $2x^2 - 1 = 0$ \mathbb{R} ومنه حلول المعادلة $x = -\frac{1}{\sqrt{2}}$ في $x = +\frac{1}{\sqrt{2}}$ هي $x = -\frac{1}{\sqrt{2}}$ و إشارة $x = -\frac{1}{\sqrt{2}}$ هي $x = -\frac{1}{\sqrt{2}}$ هي

x	$-\infty$ $-\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $+\infty$
$2x^2 - 1$	+ 0 - 0 +

المعادلة f(x)=0 لاتقبل حلول $f(x)=x^2+6$ لاقبل حلول في $\mathbb R$ و اشارة f(x) موجبة تماما أي

حل في D_f (مجموعة تعريف f(x)=0 المعادلة D_f ثم حدد حسب قيم x إشارة f(x) في الحالات التالية

تعني
$$f(x) = 0$$
 لدينا $f(x) = -3x - 6$ نعني

ومنه x=-2 ومنه حلول المعادلة f(x) في $S=\{-2\}$ هي f(x)=0

x	$-\infty$ -2 $+\infty$
-3x - 6	+ 0 -

و المعادلة f(x) = 0 المعادلة $f(x) = \frac{1}{x-2}$ (2 في f(x) و اشارة f(x) هي :

•			**
x	$-\infty$	2	+∞
$\frac{1}{x-2}$	_		0

$$f(x) = 0$$
 لدينا $f(x) = 2 + \frac{1}{x+3}$ (3) تعني $f(x) = 2 + \frac{1}{x+3} = 0$ وهذا يكافئ $2 + \frac{1}{x+3} = 0$ وهذا يكافئ $x + 3 \neq 0$ وهذا يكافئ $x = -\frac{7}{2}$ وهذا يكافئ $x + 3 \neq 0$ و $x = -\frac{7}{2}$ وبالتالي حلول المعادلة $x \neq -3$ و بالتالي حلول المعادلة $x \neq -3$ و بالتالي حلول المعادلة $x \neq -3$ و اشارة $x \neq -3$ هي: $x \neq -3$ و اشارة $x \neq -3$

:	بة تماما أي	f(x)
x	$-\infty$	$+\infty$
$-3x^2 + 2x - 4$	_	

تعني
$$f(x) = 0$$
 لدينا $f(x) = x^2 - 5x + 6$ (11 $\Delta = x^2 - 5x + 6 = 0$ نحسب المميز نجد $x^2 - 5x + 6 = 0$ المعادلة $(-5)^2 - 4(1)(6) = 1 > 0$ تقبل حلان حقيقيان هما $f(x) = 0$; $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{5-1}{2} = 2$ $f(x) = 3$

x	$-\infty$	2	3	$+\infty$
$x^2 - 5x + 6$	+	0 -	0	+

$$f(x) = 0$$
 الدينا $f(x) = \frac{x^2 + 4x + 4}{(x+1)^2}$ (12) $(x+1)^2 \neq 0$ و $x^2 + 4x + 4 = 0$ $x \neq -1$ و $\Delta = (4)^2 - 4(1)(4) = 0$ يوجد حل مضاعف هو $x_0 = \frac{4}{2(1)} = 2$ و إشارة: $f(x)$ هي:

x	$-\infty$ -2 -1 $+\infty$
$x^2 + 4x + 4$	+ 0 + +
$(x+1)^2$	+ + 0 +
$\frac{x^2 + 4x + 4}{(x+1)^2}$	+ 0 + +

$$f(x) = 0$$
 الدينا $f(x) = \frac{x-1}{(x+1)^2}$ (13) الدينا $f(x) = \frac{x-1}{(x+1)^2}$ (13) الدينا $f(x) = 0$ الدينا $f(x) =$

x	$-\infty$		$+\infty$
$x^{2} + 6$		+	

f(x) = 0 لدينا $f(x) = x^2 - 9x$ تعني f(x) = 0 ادينا f(x) = 0 تعني f(x) = 0 أي f(x) = 0 أي f(x) = 0 في f(x) = 0 و إشارة f(x) هي f(x) = 0 و إشارة f(x) هي

x	$-\infty$	0		9	+∞
x^2-9x	+	0	_	0	+

تعني f(x) = 0 لدينا $f(x) = 8x^3 - 4x^2$ (8 أي $6x^3 - 4x^2 = 0$ وبالتالي $6x^3 - 4x^2 = 0$ وبالتالي $6x^3 - 4x^2 = 0$

$$f(x)=0$$
 أو $x=rac{1}{2}$ ومنه حلول المعادلة $x=0$ في $S=\{0;rac{1}{2}\}$ هي $\mathbb R$ هي

		_			
x	$-\infty$	0		$\frac{1}{2}$	+∞
x^2	+	0	+		+
8x-4	_		_	0	+
$8x^3 - 4x^2$	_	0	_	0	+

$$f(x) = 3x^2 + 7x + 8$$
 (9)

نحسب : لدينا $0 = 3x^2 + 7x + 8$ نحسب : لدينا $\Delta = (7)^2 - 4(3)(8) = -47 < 0$ المميز نجد $\Omega = 0$ لاتقبل حلول في Ω و بالتالي المعادلة $\Omega = 0$ لاتقبل حلول في Ω و إشارة Ω موجبة تماما أي:

x	$-\infty$	+∞
$3x^2 + 7x + 8$		+

f(x)=0 لدينا : $f(x)=-3x^2+2x-4$ (10 تعني : $-3x^2+2x-4=0$ تعني $\Delta=(2)^2-4(-3)(-4)=-44<0$ وبالتالي المعادلة : f(x)=0 لاتقبل حلول في $\Omega=(2)^2$

$(x+3)^3 \neq 0$ $x \neq -3$	$-x^3 + 5x^2 - 6x = 0$ $-x(x^2 - 5x + 6) = 0$
$x \neq -3$	x = 0 أو $x = 2$
	و إشارة: $f(x)$ هي:

x	$-\infty - 3 \ 0 \ 2 \ 3 \ + \infty$
-x	+ +0
$x^2 - 5x + 6$	+ + +0-0+
$(x+3)^3$	-0++++
$\frac{-x^3 + 5x^2 - 6x}{(x+3)^3}$	- + 0 - 0 + 0 -

لدينا :
$$f(x) = \frac{(x-3)(x^2-3x+2)}{(x+4)^3}$$
 (16

$$f(x) = 0$$
 تعني $f(x) = 0$ $(x+4)^3 \neq 0$ و $(x-3)(x^2-3x+2) = 0$ $x \neq -4$ $x = 3$ أو $x = 1$ أو $x = 2$ و إشارة: $x = 3$ أو $x = 3$

x	$-\infty$ -4 1 2 3 $+\infty$
x-3	0 +
$x^2 - 3x + 2$	+ +0-0+ +
$(x+4)^3$	-0++++
$\frac{(x-3)(x^2-3x+2)}{(x+4)^3}$	+ - 0 + 0 - 0 +

x	$-\infty$ -1 1 $+\infty$
x-1	0 +
$(x+1)^2$	+ 0 + +
$\frac{x-1}{(x+1)^2}$	+

$$f(x) = 0$$
 لا تعني $f(x) = 0$ لا تعني $f(x) = -1 + \frac{1}{(x+2)^2}$ (14) $f(x) = -1 + \frac{1}{(x+2)^2}$ (14) $f(x) = \frac{(x+3)^3}{(x+3)^3}$ $f(x) = 0$ تعني $f(x) = 0$ $f($

x	$-\infty$ -3 -2 -1 $+\infty$
$-(x+2)^2+1$	- 0 + + 0 -
$(x + 2)^2$	+ + 0 + +
$\frac{-(x+2)^2+1}{(x+2)^2}$	- 0 + + 0 -

$$f(x) = 0$$
 لاينا : $f(x) = \frac{-x^3 + 5x^2 - 6x}{(x+3)^3}$ (15)

للتو اصل معنا:

الفايسبوك: Rachidyahiyahi

فايسبوك المجموعة: مجموعة الأستاذ ياحي رشيد لدروس الدعم والتقوية (رياضيات) للتواصل معنا:

الفايسبوك: Rachidyahiyahi

فايسبوك المجموعة: مجموعة الأستاذ ياحي رشيد لدروس الدعم والتقوية (رياضيات)

نشر الأسئلة تم يوم 31.08.2021

من إعداد الأستاذ ياحي رشيد رقم الهاتف: **0656836024**

الواجب المنزلي رقم 02: حول النهايات حسابيا.

		التمرين 01 ملا التالية التالي	
$\lim_{x \to 2} \frac{-3x+1}{ x-2 }$ $\lim_{x \to 1} \frac{x+1}{ x^2 - 3x + 2 }$ $\lim_{x \to 4} \frac{-2x+1}{(x-4)^2}$ $\lim_{x \to 2} \frac{4}{\sqrt{-3x+6}}$	(10 (11	$\lim_{x \to +\infty} -3x^2 + 5x + 2(1)$ $\lim_{x \to +\infty} x^3 + 7x + 4x$ $\lim_{x \to +\infty} \frac{5}{\sqrt{x - 2}}$ $\lim_{x \to +\infty} \frac{1}{x - 1} + 3x + 2$ $\lim_{x \to +\infty} \frac{7x^2 + 2}{x - 4}$	(3 (4
$\lim_{x \to 2} \frac{4}{\sqrt{x^2 - 3x + 2}}$		$\lim_{x \to +\infty} \frac{x^2 + 2x + 3}{2x^2 + x + 1}$	(6
$\lim_{x \le 5} \frac{x+4}{x^2 - 11x + 30}$ $\lim_{x \ge 4} \frac{x+1}{-x^2 + 7x - 12}$		$\lim_{x \to 2} \frac{x+4}{3x-6}$ $\lim_{x \to 5} \frac{x+3}{-4x+20}$	l

التمرين 02 🏀

. $f(x) = \frac{x^3 + x^2 - 1}{x^2 - 1}$ بـ $\mathbb{R} - \{-1; 1\}$ معرفة على f

احسب نهايات الدالة f عند أطراف مجموعة التعريف.

للتواصل معنا:

الفايسبوك: Rachidyahiyahi

فايسبوك المجموعة: مجموعة الأستاذ ياحي رشيد لدروس الدعم والتقوية (رياضيات)

من إعداد الأستاذ ياحي رشيد وقم الهاتف: 0656836024

النهايات حسابيا 🛞 حل مقترح للواجب المنزلي رقم 02 : حول النهايات حسابيا

التمرين <u>01 </u>

حساب النهايات التالية

1)
$$\lim_{x \to +\infty} -3x^2 + 5x + 2 = \lim_{x \to +\infty} -3x^2 = -\infty$$

2)
$$\lim_{x \to -\infty} x^3 + 7x + 4x = \lim_{x \to -\infty} x^3 = -\infty$$

3)
$$\lim_{x \to +\infty} \frac{5}{\sqrt{x-2}} = 0$$

4)
$$\lim_{x \to +\infty} \frac{1}{x-1} + 3x + 2 = +\infty$$

$$(\lim_{x\to+\infty} 3x+2=+\infty$$
 و $\lim_{x\to+\infty} \frac{1}{x-1}=0$ (لأن)

5)
$$\lim_{x \to +\infty} \frac{7x^2 + 2}{x - 4} = \lim_{x \to +\infty} \frac{7x^2}{x} = \lim_{x \to +\infty} 7x = +\infty$$

6)
$$\lim_{x \to +\infty} \frac{x^2 + 2x + 3}{2x^2 + x + 1} = \lim_{x \to +\infty} \frac{x^2}{2x^2} = \frac{1}{2}$$

7)
$$\lim_{x \to 2} \frac{x+4}{3x-6} = +\infty$$

لأن:

$$\begin{cases} \lim_{x \to 2} x + 4 = 6 \\ \lim_{x \to 2} 3x - 6 = 0^+ \end{cases}$$

ندرس إشارة المقام 3x-6 ندرس إشارة المقام x=2 تعني x=2 ومنه إشارة x=3 مدونة في الجدول التالي:

x	$-\infty$		2		+∞
3x - 6		_	0	+	

1		Ī
$8 \lim_{x \to 5} \frac{x+3}{-4x+20} = -\infty$		
	$\begin{cases} \lim_{x \to 5} x + 3 = 8 \\ \lim_{x \to 5} -4x + 20 = 0^{-} \end{cases}$	لأن:
	منه إشارة $20+4x$ مدونة في الجدول التالي:	ندرس إشارة المقام $20+4x+20$ لدينا $x=5$ تعني $x=5$ و
	$x -\infty$ 5	+∞
	-4x + 20 + 0 -	
9) $\lim_{x \to 2} \frac{-3x+1}{ x-2 } = -\infty$		
	$\begin{cases} \lim_{x \to 2} -3x + 1 &= -5\\ \lim_{x \to 2} x - 2 &= 0^+ \end{cases}$	لأن:
$10) \lim_{x \to 1} \frac{x+1}{ x^2 - 3x + 2 } =$	$+\infty$	
	$\begin{cases} \lim_{x \to 1} x + 1 = 2\\ \lim_{x \to 1} x^2 - 3x + 2 = 0^+ \end{cases}$	لأن:
$11) \lim_{x \to 4} \frac{-2x+1}{(x-4)^2} = -\infty$		
	$\begin{cases} \lim_{x \to 4} -2x + 1 &= -7 \\ \lim_{x \to 4} (x - 4)^2 &= 0^+ \end{cases}$	لأن:
$12) \lim_{x \to 2} \frac{4}{\sqrt{-3x+6}} = +6$	∞	
		$\lim_{x \stackrel{<}{>} 2} \sqrt{-3x+6} = 0^+ : $ لأن

$$\lim_{x \to 2} \frac{4}{\sqrt{x^2 - 3x + 2}} = +\infty$$

$$\lim_{\substack{x \to 2 \\ x \to 2}} \sqrt{x^2 - 3x + 2} = 0^+$$
 : لأن

4)
$$\lim_{x \to 5} \frac{x+4}{x^2 - 11x + 30} = +\infty$$

لأن:

$$\begin{cases} \lim_{x \to 5} x + 4 = 9 \\ \lim_{x \to 5} x^2 - 11x + 30 = 0^+ \end{cases}$$

ندرس إشارة المقام $x^2-11x+30$ ندرس إشارة المقام $x^2-11x+30$ لدينا $x^2-11x+30=0$ لدينا $x^2-11x+30=0$ وبالتالي المعادلة تقبل حلان حقيقيان نحل المعادلة $x^2-11x+30=0$ و اشارة $x^2-11x+30=0$ مدونة في الجدول التالي:

x	$-\infty$		5		6		+∞
$x^2 - 11x + 30$		+	0	_	0	+	

$$\lim_{x \to 4} \frac{x+1}{-x^2 + 7x - 12} = -\infty$$

لأن:

$$\begin{cases} \lim_{x \to 4} x + 1 = 5\\ \lim_{x \to 4} -x^2 + 7x - 12 = 0^- \end{cases}$$

ندرس إشارة المقام $\Delta=(7)^2-4(-1)(-12)=1$ لدينا $-x^2+7x-12=0$ وبالتالي المعادلة $\Delta=(7)^2-4(-1)(-12)=1$ تقبل حلان حقيقيان هما $\alpha=(7)^2$ 0 و إشارة $\alpha=(7)^2$ 1 و إشارة $\alpha=(7)^2$ 2 مدونة في الجدول التالي:

x	$-\infty$		3		4		+∞
$-x^2 + 7x + -12$		_	0	+	0	_	

. $f(x)=\frac{x^3+x^2-1}{x^2-1}$ ب $\mathbb{R}-\{-1;1\}$ عند أطراف مجموعة التعريف. \checkmark

نعلم أن: $\mathbb{R} - \{-1;1\} =]-\infty; -1[\cup]-1;1[\cup]1;+\infty[$ وبالتالي:

1)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3}{x^2} = \lim_{x \to -\infty} x = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3}{x^2} = \lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \stackrel{<}{\rightarrow} -1} f(x) = -\infty$$

لأن: $\begin{cases} \lim_{x \le -1} x^3 + x^2 - 1 = -1 \\ \lim_{x \le -1} x^2 - 1 = 0^+ \end{cases}$

إشارة $1-x^2$ مدونة في الجدول التالي:

x	$-\infty$		-1		1		$+\infty$
$x^2 - 1$		+	0	_	0	+	

$$4) \lim_{x \to -1} f(x) = +\infty$$

لأن:

$$\begin{cases} \lim_{x \to -1} x^3 + x^2 - 1 = -1 \\ \lim_{x \to -1} x^2 - 1 = 0^- \end{cases}$$

$$\lim_{x \to 1} f(x) = -\infty$$

$$\begin{cases} \lim_{\substack{x \le 1 \ \lim_{x \le 1} x^3 + x^2 - 1 = 1 \ \lim_{x \le 1} x^2 - 1 = 0^- \end{cases}$$
 : $\begin{cases} \lim_{\substack{x \le 1 \ \lim_{x \ge 1} x \ge 1}} f(x) = +\infty \end{cases}$: $\begin{cases} \lim_{\substack{x \ge 1 \ \lim_{x \ge 1} x^2 - 1 = 0^+ \ x \ge 1}} \end{cases}$

الفايسبوك: Rachidyahiyahi فايسبوك المجموعة: مجموعة الأستاذ ياحي رشيد لدروس الدعم والتقوية (رياضيات)

نشر الأسئلة تم يوم 17.09.2021

من إعداد الأستاذ ياحي رشيد وقم الهاتف: 0656836024

الواجب المنزلي رقم 03: حول النهايات حسابيا (حالات عدم التعيين).

			التمرين 01 التالية التالية التهايات التالية	
	$\lim_{x \stackrel{<}{\rightarrow} -2} \frac{x+2}{\sqrt{x^2-4}}$	(11	$\lim_{x \to +\infty} \frac{\sqrt{3x-2}}{x+1}$	(1
	$\lim_{x \to 2} \frac{x-2}{\sqrt{x-1}-1}$	(12	$\lim_{x \to -\infty} \frac{5x+2}{\sqrt{9x^2-3x+1}}$	
	$\lim_{x \to 1} \frac{\sqrt{x+2} - \sqrt{2x+1}}{x-1}$	(13	$\lim_{x \to +\infty} \sqrt{3x - 2} - x + 5$	
	$\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1}$		$\lim_{x \to -\infty} \sqrt{-x - 1} - x^2 + 1$ $\lim_{x \to -\infty} \sqrt{4x^2 - 2x + 1} + 3x - 5$	
	$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x^2-x}$	(15	$\lim_{x \to +\infty} \sqrt{4x^2 + x + 2} - 2x$	
	$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3}$		$\lim_{x \to +\infty} \sqrt{4x^2 + x + 2} - 2x^2$	
	$\lim_{x \to 0} \frac{x - 3}{\sin(5x)}$		$\lim_{x \to +\infty} \sqrt{25x^2 - 3x - 2} - \sqrt{9x^2 + x + 4}$ $\lim_{x \to +\infty} \sqrt{x + 2} - \sqrt{x}$	
			$\lim_{x \to +\infty} \sqrt{x+2} - \sqrt{x}$ $x^2 - x - 2$	
	$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$	(18	$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 3x + 2}$	(10
- 1				1

التمرين 02

. $f(x) = \frac{|x-2|}{x-2}$ ب $\mathbb{R} - \{2\}$ على f

اكتب |x-2| دون رمز القيمة المطلقة. ثم استنتج نهايات f عند أطراف مجموعة تعريفها.

 $f(x)=rac{\mathbf{03}}{x-1}$ بالتمرین $\mathbf{R}-\{1\}$ بالمعرفة على f

اكتب f(x) دون رمز القيمة المطلّقة ثمّ احسب نهايات f عند أطراف مجموعة تعريفها.

من إعداد الأستاذ ياحي رشيد وقم الهاتف: 0656836024

الواجب المنزلي رقم 03: حول النهايات حسابيا (حالات عدم التعيين).



3)
$$\lim_{x \to +\infty} \sqrt{3x-2} - x + 5$$

ح ع ت من الشكل
$$\infty - \infty +$$
 ومنه

$$\lim_{x \to +\infty} \sqrt{3x - 2} - x + 5 = \lim_{x \to +\infty} |x| \sqrt{\frac{3}{x} - \frac{2}{x^2}} - x + 5$$

$$= \lim_{x \to +\infty} x \sqrt{\frac{3}{x} - \frac{2}{x^2}} - x + 5$$

$$= \lim_{x \to +\infty} x \left[\sqrt{\frac{3}{x} - \frac{2}{x^2}} - 1 + \frac{5}{x} \right] = -\infty$$

4)
$$\lim_{x \to -\infty} \sqrt{-x-1} - x^2 + 1$$

ح ع ت من الشكل
$$\infty - \infty +$$
 ومنه

$$\lim_{x \to -\infty} \sqrt{-x - 1} - x^2 + 1 = \lim_{x \to -\infty} |x| \sqrt{\frac{-1}{x} - \frac{1}{x^2}} - x^2 + 1$$

$$= \lim_{x \to -\infty} -x \sqrt{-\frac{1}{x} - \frac{1}{x^2}} - x^2 + 1$$

$$= \lim_{x \to -\infty} x \left[-\sqrt{-\frac{1}{x} - \frac{1}{x^2}} - x + \frac{1}{x} \right] = -\infty$$

$$\lim_{x \to -\infty} \sqrt{4x^2 - 2x + 1} + 3x - 5$$

$$-3$$
 ت من الشكل $-\infty$ ومنه

$$\lim_{x \to -\infty} \sqrt{4x^2 - 2x + 1} + 3x - 5 = \lim_{x \to -\infty} |x| \sqrt{4 - \frac{2}{x} + \frac{1}{x^2} + 3x - 5}$$

$$= \lim_{x \to -\infty} -x \sqrt{4 - \frac{2}{x} + \frac{1}{x^2}} + 3x - 5$$

$$= \lim_{x \to -\infty} x \left[-\sqrt{4 - \frac{2}{x} + \frac{1}{x^2}} + 3 - \frac{5}{x} \right] = -\infty$$

$$\lim_{x \to +\infty} \sqrt{4x^2 + x + 2} - 2x$$

$$\lim_{x \to +\infty} \sqrt{4x^2 + x + 2} - 2x = \lim_{x \to +\infty} \frac{\left(\sqrt{4x^2 + x + 2} - 2x\right) \left(\sqrt{4x^2 + x + 2} + 2x\right)}{\sqrt{4x^2 + x + 2} + 2x}$$

$$= \lim_{x \to +\infty} \frac{4x^2 + x + 2 - (2x)^2}{\sqrt{4x^2 + x + 2} + 2x}$$

$$= \lim_{x \to +\infty} \frac{x + 2}{\sqrt{4x^2 + x + 2} + 2x}$$

$$= \lim_{x \to +\infty} \frac{x \left(1 + \frac{2}{x}\right)}{|x|\sqrt{4 + \frac{1}{x} + \frac{2}{x^2}} + 2x}$$

$$= \lim_{x \to +\infty} \frac{x \left(1 + \frac{2}{x}\right)}{|x|\sqrt{4 + \frac{1}{x} + \frac{2}{x^2}} + 2x} = \frac{1}{4}$$

$$\lim_{x \to +\infty} \sqrt{4x^2 + x + 2} - 2x^2$$

$$\lim_{x \to -\infty} \sqrt{4x^2 + x + 2} - 2x^2$$

$$\lim_{x \to -\infty} |x|\sqrt{4x^2 + x + 2} - 2x^2$$

$$= \lim_{x \to -\infty} |x|\sqrt{4x^2 + x + 2} - 2x^2$$

$$= \lim_{x \to -\infty} |x|\sqrt{4x^2 + x + 2} - 2x^2$$

$$= \lim_{x \to -\infty} |x|\sqrt{4x^2 + x + 2} - 2x^2$$

$$= \lim_{x \to -\infty} -x\sqrt{4x^2 + x + 2} - 2x^2$$

$$= \lim_{x \to -\infty} -x\sqrt{4x^2 + x + 2} - 2x^2$$

 $= \lim_{x \to -\infty} x \left[-\sqrt{4 + \frac{1}{x} + \frac{2}{x^2}} - 2x \right] = -\infty$

8)
$$\lim_{x \to +\infty} \sqrt{25x^2 - 3x - 2} - \sqrt{9x^2 + x + 4}$$

ح ع ت من الشكل
$$\infty - \infty +$$
 ومنه

$$\lim_{x \to -\infty} \sqrt{25x^2 - 3x - 2} - \sqrt{9x^2 + x + 4} = \lim_{x \to -\infty} |x| \sqrt{25 - \frac{3}{x} - \frac{2}{x^2}} - |x| \sqrt{9 + \frac{1}{x} + \frac{4}{x^2}}$$

$$= \lim_{x \to -\infty} x \left[-\sqrt{25 - \frac{3}{x} - \frac{2}{x^2}} + \sqrt{9 + \frac{1}{x} + \frac{4}{x^2}} \right] = +\infty$$

$$\lim_{x \to +\infty} \sqrt{x+2} - \sqrt{x}$$

ح ع ت من الشكل
$$\infty - \infty +$$
 ومنه

$$\lim_{x \to +\infty} \sqrt{x+2} - \sqrt{x} = \lim_{x \to +\infty} \frac{\left(\sqrt{x+2} - \sqrt{x}\right)\left(\sqrt{x+2} + \sqrt{x}\right)}{\sqrt{x+2} + \sqrt{x}}$$

$$= \lim_{x \to +\infty} \frac{x+2-x}{\sqrt{x+2} + \sqrt{x}}$$

$$= \lim_{x \to +\infty} \frac{2}{\sqrt{x+2} + \sqrt{x}} = 0$$

$$0) \lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 3x + 2}$$

ح ع ت من الشكل
$$\frac{0}{0}$$
 نقوم بتحليل كلا من البسط و المقام نجد

$$x^2 - 3x + 2$$
 | $x - 2$ | $x - 1$ | $x - 2$ | $x - 2$ | $x - 1$ | $x - 2$ | $x - 2$ | $x - 1$ | $x - 2$ | $x - 2$

$$\begin{vmatrix} -x^2 + 2x \\ x - 2 \\ -x + 2 \\ 0 \end{vmatrix}$$
 $x + 1$

$$x^2 - x - 2 = (x - 2)(x + 1)$$
 $x + 1$

$$\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 3x + 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)(x - 1)} = 3$$

1) $\lim_{x \to -2} \frac{x+2}{\sqrt{x^2-4}}$ ح ع ت من الشكل $\frac{0}{0}$ ومنه $\lim_{x \le -2} \frac{x+2}{\sqrt{x^2-4}} = \lim_{x \to -2} \frac{(x+2)\sqrt{x^2-4}}{\sqrt{x^2-4} \times \sqrt{x^2-4}}$ $= \lim_{x \to -2} \frac{(x+2)\sqrt{x^2-4}}{x^2-4}$ $= \lim_{x \to -2} \frac{(x+2)\sqrt{x^2-4}}{(x-2)(x+2)}$ $= \frac{0}{-4} = 0$ 2) $\lim_{x\to 2} \frac{x-2}{\sqrt{x-1}-1}$ ح ع ت من الشكل $\frac{0}{0}$ ومنه $\lim_{x \to 2} \frac{x-2}{\sqrt{x-1}-1} = \lim_{x \to 2} \frac{(x-2)(\sqrt{x-1}+1)}{(\sqrt{x-1}-1)(\sqrt{x-1}+1)}$ $= \lim_{x \to 2} \frac{(x-2)(\sqrt{x-1}+1)}{\sqrt{x-1}^2 - (1)^2}$ $= \lim_{x \to 2} \frac{(x-2)(\sqrt{x-1}+1)}{(x-2)}$

$$\lim_{x \to 1} \frac{\sqrt{x+2} - \sqrt{2x+1}}{x-1}$$

ح ع ت من الشكل
$$\frac{0}{0}$$
 ومنه

$$\lim_{x \to 1} \frac{\sqrt{x+2} - \sqrt{2x+1}}{x-1} = \lim_{x \to 1} \frac{(\sqrt{x+2} - \sqrt{2x+1})(\sqrt{x+2} + \sqrt{2x+1})}{(x-1)(\sqrt{x+2} + \sqrt{2x+1})}$$

$$= \lim_{x \to 1} \frac{x+2-2x-1}{(x-1)(\sqrt{x+2} + \sqrt{2x+1})}$$

$$= \lim_{x \to 1} \frac{(-x+1)}{-(-x+1)(\sqrt{x+2} + \sqrt{2x+1})}$$

$$= \lim_{x \to 1} \frac{1}{-(\sqrt{x+2} + \sqrt{2x+1})}$$

$$= -\frac{1}{2\sqrt{3}}$$

$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1}$$

ح ع ت من الشكل
$$\frac{0}{0}$$
 ومنه

$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1} = \lim_{x \to 1} \frac{\sqrt{x-1} \times \sqrt{x-1}}{\sqrt{x-1}(x-1)}$$

$$= \lim_{x \to 1} \frac{\cancel{(x-1)}}{\sqrt{x-1}\cancel{(x-1)}}$$

$$= \lim_{x \to 1} \frac{1}{\sqrt{x-1}} = +\infty$$

$$\lim_{x \to 1} \sqrt{x - 1} = 0^+$$
 کُن:

 $5) \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x^2 - x}$ ح ع ت من الشكل $\frac{0}{0}$ ومنه $\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x^2 - x} = \lim_{x \to 0} \frac{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}{(x^2 - x)(\sqrt{x+1} + 1)}$ $= \lim_{x \to 0} \frac{(x+1-1)}{x(x-1)(\sqrt{x+1}+1)}$ $= \lim_{x \to 0} \frac{(x)}{(x)(x-1)(\sqrt{x+1}+1)}$ 6) $\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3}$ ح ع ت من الشكل $\frac{0}{0}$ ومنه $\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x-3} = \lim_{x \to 3} \frac{(\sqrt{x+1} - 2)(\sqrt{x+1} + 2)}{(x-3)(\sqrt{x+1} + 2)}$ $= \lim_{x \to 3} \frac{\sqrt{x+1}^2 - (2)^2}{(x-3)(\sqrt{x+1} + 2)}$ $= \lim_{x \to 3} \frac{\cancel{(x-3)}}{\cancel{(x-3)}(\sqrt{x+1}+2)}$ $|7| \lim_{x \to 2} \frac{x^3 - 8}{x - 2}$ ح ع ت من الشكل $\frac{0}{0}$ **طريقة 01:** نقوم بتحليل البسط نجد

$$\begin{array}{c|ccccc}
x^3 & -8 & x-2 \\
-x^3 + 2x^2 & x^2 + 2x + 4 \\
\hline
& 2x^2 \\
-2x^2 + 4x & 4x - 8 \\
& -4x + 8 \\
\hline
& 0
\end{array}$$

 $x^3 - 2 = (x - 2)(x^2 + 2x + 4)$:ومنه

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{\cancel{(x - 2)}(x^2 + 2x + 4)}{\cancel{(x - 2)}} = 12$$

طريقة 20: نستعمل العدد المشتق: بوضع $f(x)=x^3-8$ نجد وألد الدالة $f(x)=x^3-8$ قابلة للإشتقاق على ودالتها المشتقة هي $f'(x)=3(2)^2=12$ أي: $f'(x)=3(2)^2=12$

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) = 12$$

 $8) \lim_{x\to 0} \frac{\sin(5x)}{7x}$

نستعمل العدد المشتق: بوضع $f(x)=\sin(5x)$ نجد $f(x)=\sin(5x)$ الدالة f قابلة للإشتقاق على $f(x)=\sin(5x)$ ودالتها المشتقة هي $f'(0)=5\cos(0)=5$ أي: $f'(x)=5\cos(5x)$

$$\lim_{x \to 0} \frac{\sin(5x)}{7x} = \frac{1}{7} \lim_{x \to 0} \frac{\sin(5x)}{x} = \frac{1}{7} \times \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{1}{7} \times f'(0) = \frac{5}{7}$$

. $f(x) = \frac{|x-2|}{x-2}$ ب $\mathbb{R} - \{2\}$ على f

$$|x-2|$$
 حون رمز القيمة المطلقة. $|x-2|=\{x-2, x\in]-\infty; 2\}$ المرا القيمة المطلقة. $|x-2|=\{x-2, x\in]-\infty; 2\}$ المرا ال

$$f(x) = \begin{cases} -\frac{(x-2)}{x-2} & , & x \in]-\infty; 2[\\ \frac{x-2}{x-2} & , & x \in]2; +\infty[\end{cases}$$

حساب نهایات f عند أطراف مجموعة تعریفها.

1)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-(x-2)}{(x-2)} = \lim_{x \to -\infty} \frac{-x}{x} = -1$$

2)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{(x-2)}{(x-2)} = \lim_{x \to +\infty} \frac{x}{x} = 1$$

3)
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{-(x-2)}{(x-2)} = -1$$

4)
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{-(x-2)}{(x-2)} = 1$$

التمرين 03 🦂

. $f(x) = \frac{|x^2 - 3x + 2|}{x - 1}$ ب $\mathbb{R} - \{1\}$ على f

 $x^2 - 3x + 2 = 0$ دون رمز القيمة المطلقة أو لا ندرس إشارة $2x^2 - 3x + 2 = 0$ نحل المعادلة f(x) دون رمز القيمة المطلقة أو لا ندرس إشارة $x^2 - 3x + 2 = 0$ واشارة $x_1 = 1$ و $x_2 = 2$ و اشارة $x_2 = 2$ مدونة في الجدول التالي:

x	$-\infty$		1		2		+∞
$x^2 - 3x + 2$		+	0	_	0	+	

و بالتالي:

$$|x^2 - 3x + 2| = \begin{cases} -(x^2 - 3x + 2) & , & x^2 - 3x + 2 \le 0 \\ x^2 - 3x + 2 & , & x^2 - 3x + 2 \ge 0 \end{cases}$$

أي

$$|x^2 - 3x + 2| = \begin{cases} -(x^2 - 3x + 2) & , & x \in [1;2] \\ x^2 - 3x + 2 & , & x \in [-\infty;1] \cup [2;+\infty[$$

و بالتالي:

$$f(x) = \frac{|x^2 - 3x + 2|}{x - 1} = \begin{cases} \frac{-(x^2 - 3x + 2)}{x - 1} &, x \in]1;2] \\ \frac{x^2 - 3x + 2}{x - 1} &, x \in]-\infty;1[\cup[2; +\infty[$$

حساب نهایات
$$f$$
 عند أطراف مجموعة تعریفها.

1)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 - 3x + 2}{x - 1} = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to -\infty} x = -\infty$$

2)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 3x + 2}{x - 1} = \lim_{x \to -\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

3)
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1} = \lim_{x \to 1} \frac{\cancel{(x - 1)}(x - 2)}{\cancel{(x - 1)}} = -1$$

4)
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{-(x^2 - 3x + 2)}{x - 1} = \lim_{x \to 1} \frac{-(x - 1)(x - 2)}{(x - 1)} = 1$$

الواجب المنزلي رقم 04 حول تعيين النهايات بيانيا و من جدول التغيرات + المستقيمات المقاربة.

التمرين 01 🤻

f باستعمال منحنى الدالة

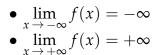
- ا عين مجموعة تعريف الدالة f
- عين نهايات الدالة f عند حدود مجموعة التعريف

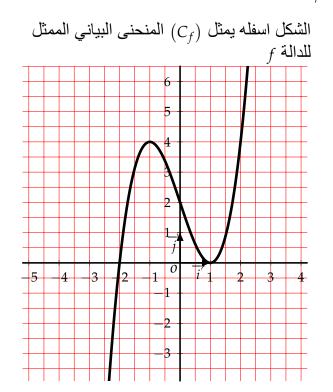
الجو إب:

مجموعة تعريف الدالة f هي:

$$D_f = \mathbb{R} =]-\infty; +\infty[$$

عبين نهايات الدالة بيانيا (2)





التمرين 02 😽

f دالة عددية قابلة للإشتقاق على كل مجال من مجموعة تعريفها. لها جدول التغيرات التالي:

x	$-\infty$		-1		2		$+\infty$
f'(x)		+	0	_	0	+	
f(x)	$-\infty$		0.5		~ ₀ /		+∞

- عين نهايات الدالة f عند أطراف مجموعة تعريفها $\widehat{f 1}$
- الجواب:
- مجموعة تعريف الدالة f هي:

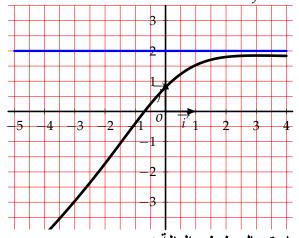
$$D_f = \mathbb{R} =]-\infty; +\infty[$$

تعيين نهايات الدالة بيانيا (2)

- $\bullet \lim_{x \to -\infty} f(x) = -\infty$
- $\bullet \lim_{x \to +\infty} f(x) = +\infty$

التمرين 03 🤻

الشكل اسفله يمثل (C_f) المنحنى البياني الممثل



باستعمال منحنى الدالة f

- $oldsymbol{1}$ عين مجموعة تعريف الدالة $oldsymbol{1}$
- 2 عين نهايات الدالة f عند حدود مجموعة التعريف ثم استنتج معادلة المستقيم المقارب الافقي (C_f) \beth

1مجموعة تعريف الدالة f هي:

$$D_f = \mathbb{R} =]-\infty; +\infty[$$

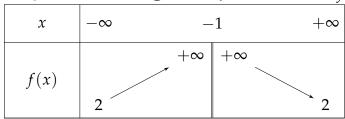
تعيين نهايات الدالة بيانيا (2)

- $\lim_{x \to -\infty} f(x) = -\infty$
- $\lim_{x \to +\infty} f(x) = 2$

 $\left(C_{f}
ight)$ لو بالتالي y=2 معادلة مستقيم مقارب افقي لـ وبالتالي بجوار ∞+

% التمرين 04

ردالة عددية قابلة للإشتقاق على كل مجال من مجموعة تعريفها. لها جدول التغيرات التالي: f



عند أطراف مجموعة تعريفها f عند أطراف مجموعة تعريفها

الجواب:

 \bigcirc مجموعة تعريف الدالة $_f$ هي:

$$D_f = \mathbb{R} =]-\infty; +\infty[$$

عيين نهايات الدالة بيانيا (2)

- $\lim_{x \to -\infty} f(x) = 2$
- $\lim_{x \to +\infty} f(x) = 2$ $\lim_{x \to +\infty} f(x) = +\infty$
- $\lim f(x) = +\infty$ $x \stackrel{\leq}{\rightarrow} -1$

التمرين 05 🐇

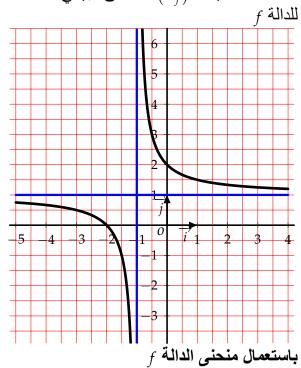
الشكل اسفله يمثل (C_f) المنحنى البياني الممثل

الجواب:

مجموعة تعريف الدالة f هي: $oxedsymbol{1}$

$$D_f = \mathbb{R} - \{-1\} =] - \infty; -1[\cup] - 1; +\infty[$$

تعيين نهايات الدالة f تعيين نهايات الدالة f وبالتالي y=1 معادلة مستقيم $\int_{x\to-\infty}^{\infty} f(x)=1$ مقارب افقي لـ $\int_{x\to+\infty}^{\infty} f(x)=1$ وبالتالي f(x)=1 معادلة مستقيم مقارب افقي لـ $\int_{x\to+\infty}^{\infty} f(x)=1$ بجوار $\int_{x\to+\infty}^{\infty} f(x)=1$ معادلة مستقيم مقارب عمودي لـ $\int_{x\to-1}^{\infty} f(x)=1$



- $oldsymbol{1}$ عين مجموعة تعريف الدالة $oldsymbol{1}$
- 2 عين نهايات الدالة f عند حدود مجموعة التعريف مع تفسيرها هندسيا

التمرين 06

f دالة عددية قابلة للإشتقاق على كل مجال من مجموعة تعريفها. لها جدول التغيرات التالى:

x	$-\infty$	$\frac{1}{2}$	1	1	$\frac{3}{2}$		$+\infty$
f'(x)	+	0	_	_	0	+	
f(x)	$-\infty$	3	-∞	+∞	2		+∞

عين نهايات الدالة f عند أطراف مجموعة تعريفها $oldsymbol{1}$

الجواب:

مجموعة تعريف الدالة f هي:

$$D_f = \mathbb{R} - \{-1\} =] - \infty; 1[\cup]1; +\infty[$$

f تعيين نهايات الدالة 2

- $\lim_{x \to -\infty} f(x) = -\infty$
- $\lim_{x \to +\infty} f(x) = +\infty$
- $\lim_{x \to \infty} f(x) = -\infty$
- $\lim_{x \to \infty} f(x) = +\infty$

التمرين 07 🤻

الشكل اسفله يمثل (C_f) المنحنى البياني الممثل

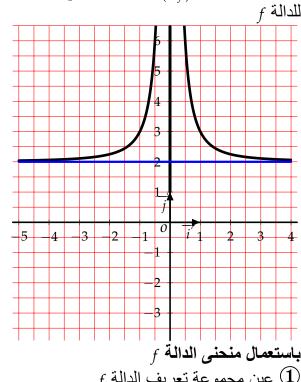
الجواب:

مجموعة تعريف الدالة f هي:

$$D_f = \mathbb{R} - \{0\} =]-\infty; 0[\cup]0; +\infty[$$

f تعيين نهايات الدالة $\frac{1}{2}$ تعيين نهايات الدالة و بالتالي y=2 معادلة مستقيم f(x)=2 $-\infty$ مقارب افقي لـ $(\overset{\circ}{C}_f)$ بجوار وبالتالي y=2 معادلة مستقيم $\lim_{x\to +\infty}f(x)=2$ $+\infty$ مقارب افقي لـ (C_f) بجوار وبالتالي x=0 وبالتالي $\lim_{x\to\infty}f(x)=+\infty$ مقارب عمودي ألم (C_f) .

أ وبالتالي x=0 وبالتالي أ $\lim_{x\to\infty}f(x)=+\infty$ $x \stackrel{>}{>} 0$ مقارب عمودي له (C_f) .



- ين مجموعة تعريف الدالة f .
- عين نهايات الدالة f و استنتج معالات المستقيمات المقاربة لـ $\binom{C_f}{}$

التمرين 08 🤻

f دالة عددية قابلة للإشتقاق على كل مجال من مجموعة تعريفها. لها جدول التغيرات التالى:

x	$-\infty$	0	2		3	+∞
f(x)	4		+∞	+∞	0_	_2

عين نهايات الدالة $_f$ عند أطراف مجموعة تعريفها ${\widehat{f 1}}$

الجواب:

مجموعة تعريف الدالة f هي:

$$D_f = \mathbb{R} - \{2\} =]-\infty; 2[\cup]2; +\infty[$$

f تعيين نهايات الدالة $\widehat{\mathbf{2}}$

- $\lim_{x \to -\infty} f(x) = 4$ $\lim_{x \to +\infty} f(x) = -2$ $\lim_{x \to +\infty} f(x) = +\infty$
- $\lim f(x) = +\infty$

التمرين 09

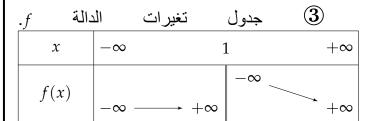
الجواب:

مجموعة تعريف الدالة f هي:

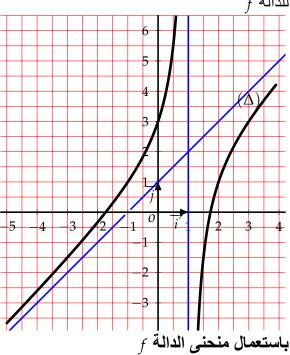
$$D_f = \mathbb{R} - \{1\} =]-\infty; 1[\cup]1; +\infty[$$

- f تعيين نهايات الدالة $\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$
- $\lim_{x \to +\infty} f(x) = +\infty \bullet$
- $\chi = 1$ وبالتالي $f(x) = +\infty$ معادلة
- مستقیم مقارب عمودي له معارب عمودي له معادل . (C_f) . $\lim_{x \to 1} f(x) = -\infty$ معادلة

مستقيم مقارب عمودي لـ (C_f) .



الشكل اسفله يمثل (C_f) المنحنى البياني الممثل



- ين مجموعة تعريف الدالة f .
- عين نهايات الدالة f عند حدوّد مجموعة التعريف مع تفسيرها هندسيا ان امكن
 - مثل جدول تغيرات الدالة f.

التمرين 10 %

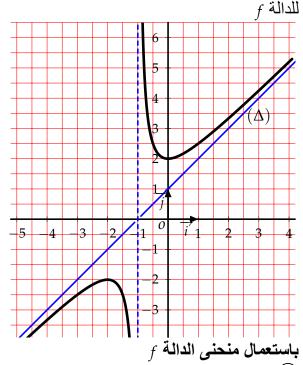
الشكل اسفله يمثل (C_f) المنحنى البياني الممثل

الجواب:

1مجموعة تعريف الدالة f هي:

$$D_f = \mathbb{R} - \{-1\} =] - \infty; -1[\cup] - 1; +\infty[$$

- f تعيين نهايات الدالة $\frac{1}{x}$ $\frac{1}{x \to -\infty}$ $f(x) = -\infty$ $\lim_{x \to +\infty} f(x) = +\infty$
- معادلة x = -1 وبالتالي $\lim_{\substack{x \to +\infty \\ x \le -1}} f(x) = -\infty$ معادلة مستقيم مقارب عمو دي له $\lim_{\substack{x \to -1 \\ x \ge 1}} f(x) = +\infty$ معادلة مستقيم مقارب عمو دي له $\lim_{\substack{x \to 1 \\ x \ge 1}} f(x) = +\infty$ مستقيم مقارب عمو دي له $\lim_{\substack{x \to 1 \\ x \ge 1}} f(x)$.



- ين مجموعة تعريف الدالة f .
- عين نهايات الدالة f عند حدود مجموعة التعريف مع تفسيرها هندسيا ان امكن
 - مثل جدول تغيرات الدالة f.

عدول تغيرات الدالة

x	$-\infty$	2	-1	0	$+\infty$
f(x)	$-\infty$	-2	 -∞ +∞	2	+∞

التمرين 11 🤻

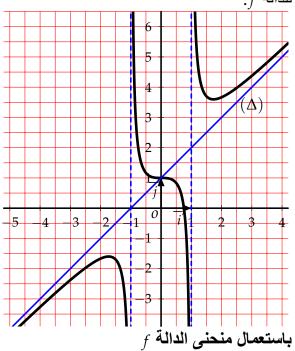
الجواب:

مجموعة تعريف الدالة f هي:

$$D_f = \mathbb{R} - \{-1; 1\} =] - \infty; -1[\cup] - 1; 1[\cup] 1; +\infty[$$

- f تعيين نهايات الدالة $\lim_{x \to -\infty} f(x) = -\infty$ $\lim_{x \to +\infty} f(x) = +\infty$
- $\lim_{x \to +\infty} f(x) = -\infty$ و بالتالي $\lim_{x \to -1} f(x) = -\infty$ معادلة ...
 - مستقيم مقارب عمودي لـ (C_f) .
- x=-1 وَبَالْتَالِي x=-1 معادلة $x\stackrel{>}{>} -1$
 - مستقیم مقارب عمودي لـ (C_f) .
- وبالتَالي x=1 معادلة مستقيم $\lim_{x\to\infty}f(x)=-\infty$ $(C_f)^{x \to 1}$ مقارب عمودي لـ
- $(C_f)^{\stackrel{x}{\Rightarrow} 1}$ مقارب عمودي لـ

الشكل اسفله يمثل (C_f) المنحنى البياني الممثل



- ين مجموعة تعريف الدالة f .
- عين نهايات الدالة f عند حدود مجموعة التعريف مع تفسيرها هندسيا ان امكن

التمرين 12 🤻

الجواب:

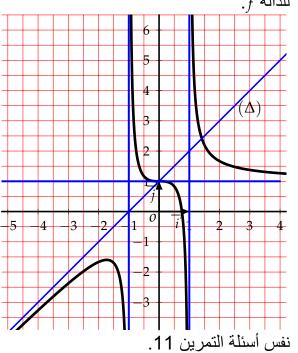
مجموعة تعريف الدالة f هي:

الشكل اسفله يمثل (C_f) المنحنى البياني الممثل

$$D_f = \mathbb{R} - \{-1;1\} =] - \infty; -1[\cup] - 1;1[\cup]1; +\infty[$$

- f تعيين نهايات الدالة $\widehat{m{2}}$
- $\lim_{x \to -\infty} f(x) = -\infty$ $\lim_{x \to -\infty} f(x) = -\infty$ وبالتالي y = 1 معادلة مستقيم مقارب افقي لـ (C_f) بجوار (C_f)
- معادلة x=-1 وبالتالي $\lim_{x\to -1} f(x)=-\infty$ معادلة مستقيم مقارب عمودي لـ (C_f) .
- مستقیم معارب عمودی نے (c_f) . $\lim_{x \to -1} f(x) = +\infty \bullet$ معادلة $\lim_{x \to -1} f(x) = -\infty \bullet$ مستقیم مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty \bullet$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$ مقارب عمودی لے $\lim_{x \to 1} f(x) = -\infty$
- أ في التالي x=1 معادلة مستقيم $\lim_{x\to\infty} f(x)=+\infty$

 $x \stackrel{>}{\to} 1$ مقارب عمودي لـ (C_f)



التمرين 13 🤻

الجواب:

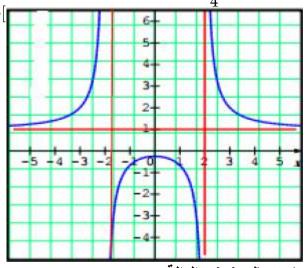
مجموعة تعريف الدالة f هي:

 $D_f = \mathbb{R} - \{-2; 2\} =] - \infty; -2[\cup] - 2; 2[\cup] 2; +\infty[]$

تعيين نهايات الدالة f تعيين نهايات الدالة و $\lim_{x\to -\infty} f(x)=1$

- $+\infty$ مقارب افقي لـ (C_f) بجوار
- $\lim_{x \to -2} f(x) = +\infty$ وبالتالي $\lim_{x \to -2} f(x) = +\infty$ مستقيم مقارب عمودي لـ (C_f) .
- x=-2 وبالتالي $\lim_{x\stackrel{>}{ o}-2}f(x)=-\infty$ معادلة
 - مستقیم مقارب عمودي لّـ (C_f) .
- وبالتّالي x=2 معادلة مستقيم $\lim_{x\to \infty}f(x)=-\infty$ $(C_f)^{x \stackrel{>}{\rightarrow} 2}$ مقارب عمودي لـ
- أن في التالي x=2 معادلة مستقيم أ $\inf f(x)=+\infty$ $(C_f)^{x \stackrel{>}{\rightarrow} 2}$ مقارب عمودي لـ

الشكل اسفله يمثل (C_f) المنحنى البياني الممثل . $f(0) = -\frac{1}{4}$ للدالة f حيث



باستعمال منحنى الدالة f

- ين مجموعة تعريف الدالة f .
- 2 عين نهايات الدالة f عند حدو 2 مجموعة التعريف مع تفسيرها هندسيا
 - مثل جدول تغيرات الدالة f.

جدول تغيرات الدالة f.

