السلسة الأولى (التمارين) - المحور: المتاليات العددية

سلاسل العبقري في الرياضيات

الشعبة: آداب وفلسفة، لغات أجنبية

التحضير الجيد لبكالوريا: 2020

المُرين الأوّل: (05 نقاط) بكالوريا 2008 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

 $u_n=3n+1$ کما یلي: N کما معرّفة علی (u_n

 $.u_2 `u_1 `u_0$

 (u_n) عیّن اتجاه تغیّر (u_n) حسابیة یُطلب تعیین أساسها. عیّن اتجاه تغیّر (u_n)

رتبته؟ العدد 2008 حدّ من حدود المتتالية (u_n) . ما رتبته؟

 $S = u_0 + u_1 + u_2 + \dots + u_{669}$ احسب المجموع)/4

المَرِن الثانِي: (06 نقاط) بكالوريا 2008 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

 $u_1=7$ ومن أجل كل عدد طبيعي غير معدوم $u_1=7$ ومن أجل كل عدد طبيعي غير معدوم u_n

 $.u_{n+1} = 2u_n + 1$

 $.u_{4} \cdot u_{3} \cdot u_{2}$ الحسب (1

 $v_n = u_n + 1$ ىمن أجل كل عدد طبيعي غير معدوم n، نُعرف المتتالية (v_n) كما يأتي: 1 (2) من أجل كل عدد طبيعي غير معدوم q أ-أثبت أنّ (v_n) متتالية هندسية يُطلب تعيين أساسها q وحدّها الأول v_n

n بدلالة u_n بدلالة n ثمّ استنتج بدلالة بدلالة بدلالة بادت

 s_n بدلالة $S_n=v_1+v_2+\cdots+v_n$ بدلالة

 $S_n=1016$ د-عيّن n علماً أنّ

المَرِنِي الثالثِي: (06 نقاط) بكالوريا 2009 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

 $u_{2}-2u_{5}=19$ وبالعلاقة $u_{1}=2$ وبالعلاقة الأول $u_{1}=2$ وبالعلاقة الأول $u_{n}=2$

 (u_n) أ-أحسب الأساس r للمتتالية (1

ب-أحسب الحد العاشر.

n بدلاله u_n عباره عباره)

3) بيّن أنّ العدد (2008-) هو حداً من حدود (u_n) . محدّدا رتبته.

 $S = u_1 + u_2 + \dots + u_{671}$: أحسب المجموع) (4

المُرين الرابع: (٥٦ نقاط) بكالوريا 2009 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

متتالية هندسية معرّفة على $\mathbb N$ وأساسها موجب.

 $u_5=576$ و $u_3=144$ وأن u_0 و $u_0=1$ عين أساس هذه المنتالية وحدّها الأول u_0

 $u_n=18 imes 2^n$:من أجل كل عدد طبيعي 2-تحقّق أنّه من أجل كل عدد طبيعي

د. أحسب بدلالة n المجموع: $n_n = u_0 + u_1 + \dots + u_n$ ، ثمّ استنتج قيمة العدد الطبيعي n حيث: $S_n = 1134$

المَرِن الخامس: (05 نقاط) بكالوريا 2010 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

 $u_{15} = 46$ وَ $u_{10} = 31$: بالحدين $u_{15} = 46$ وَ معرّفة على المحدين (u_n) و

 u_0 عيّن أساسها وحدّها الأول u_0 .

n بدلالة u_n بدلالة u_n

 (u_n) حدّ من حدود المتتالية (6028 حدّ من حدود المتتالية (

 $S = u_0 + u_1 + \dots + u_{2009}$: $S = u_0 + u_1 + \dots + u_{2009}$

 $v_n = 2 imes 8^n$: بعتبر المنتالية (v_n) المعرّفة على $\mathbb N$ بـ(II)

 v_0 متتالية هندسية يُطلب تعيين أساسها وحدّها الأول v_n متتالية الأول . v_0

 $S' = v_0 + v_1 + \dots + v_n$ اً-2 المجموع -2

المَرِين السادس: (07 نقاط) بكالوريا 2010 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

مُتتالية هندسية معرّفة على مجموعة الأعداد الطبيعية q، أساسها q وحدّها الأوّل u_0 حيث:

 $.u_4 = 48$ و $u_1 = 6$

1.أ-أحسب الأساس والحدّ الأوّل للمتتالية (u_n) .

 $u_n=3 imes 2^n$ ب-استنتج أنّ عبارة الحدّ العام للمتتالية (u_n) هي:

 (u_n) علماً أنّ $2^8=256$ ؛ بيّن أنّ العدد 768 هو حدّ من حدود المتتالية $2^8=256$.

 $S = u_0 + u_1 + \dots + u_7$ ب-أحسب المجموع $S = u_0 + u_1 + \dots + u_7$

 $v_{n+1}=2v_n-1$: منتالية عددية معرّفة ب $v_0=4$ ومن أجل كل عدد طبيعي $v_0=4$. أ-أحسب: v_2 ، v_2 ، v_2 ، v_2 ، v_3 .

 $v_n=3 imes 2^n+1$ ب هن بالتراجع أنَّه من أجل كل عدد طبيعي بالتراجع.

 $S'=v_0+v_1+\cdots+v_7$ ج-أحسب المجموع S' حيث:

المَرِينِ السابع: (06 نقاط) بكالوريا 2011 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

 $u_0 + u_3 = 28$: متتالية هندسية أساسها 3 وحدّها الأول $(u_n)^{\dagger}$

n احسب u_0 ، ثمّ اكتب الحد العام u_0 بدلالة.

 $S_1 = u_0 + u_1 + \dots + u_9$: احسب المجموع.

 $v_n=1-5n$ ب) متتالية عددية معرّفة على $\mathbb N$ بحدّها العام (v_n)

ليّن أنّ (v_n) متتالية حسابية يُطلب تعيين أساسها ثمّ استنتج اتجاه تغيّرها. 1

 $S_2 = v_0 + v_1 + \dots + v_9$: احسب المجموع.

 $k_n=1+3^n-5n$: المعرّفة على $\mathbb N$ بحدّها العام (k_n) المعرّفة على $\mathbb N$

 $S=k_0+k_1+\cdots+k_9$: تحقّق أنّ $k_n=u_n+v_n$ ثمّ احسب المجموع $k_n=u_n+v_n$

المَرِن الثامن: (06 نقاط) بكالوريا 2011 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

 $v_n=3^{-2n}$ و $u_n=-2n$. و $u_n=v_n=0$. و $u_n=v_n=0$. عيّن في كلّ حالة من الحالات الخمس في الجدول أدناه الاقتراح الصحيح من بين الاقتراحات الثلاث مع التعليل.

اقتراح 3	اقتراح 2	اقتراح 1		
لا حسابية ولا هندسية	حسابية	هندسية	هي متتالية (u_n)	
-88	-92	- 90	الحد الخامس والأربعون للمتتالية (u_n) يساوي	2
$-n^2 - 1$	$-n^2-n$	$n^2 + 1$	المجموع $u_0+u_1+\cdots+u_n$ يساوي	3
-9	9	1 9	متتالية هندسية أساسها (v_n)	4
ليست رتيبة	متناقصة	متزايدة	(v_n) المتتالية	5

المُرين التاسع: (06 نقاط) بكالوريا 2012 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

a+b+c=9: ثلاثة حدود متتابعة لمتتالية حسابية متزايدة أساسها c ، b ، a

rأ) احسب b ثم اكتبa و c بدلالة.

 $a \times c = -16$: ب) علماً أنّ

c و a عيّن الأساس r ثم استنتج

متتالية حسابية حدها الأول $u_0=-2$ وأساسها 5. u_n

n بدلالة u_n بدلالة أ) عبّر عن الحدّ العام

 $S = u_0 + u_1 + \dots + u_{15}$ ثم استنتج المجموع: u_{15}

 $8v_n-u_n=0$:متتالية عددية معرفة على v_n بالعلاقة (v_n).3

 $S' = v_0 + v_1 + \dots + v_{15}$ احسب المجموع:

المَرِينِ العاشر: (06 نقاط) بكالوريا 2012 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

 $u_{3}=7$ مُتتالية حسابية متزايدة، أساسها r، حدّها الأول u_{1} و u_{2}

 $T_2=u_2 imes u_4$ الجدائين: $T_1=u_1 imes u_5$ الجدائين: $T_2=u_2 imes u_4$ الجدائين: 1.1

 $T_2 - T_1 = 27$ ب يين الأساس $T_2 - T_1 = 27$ ب يين الأساس

.r = 3نضع.

أ) اكتب عبارة الحدّ العام u_n بدلالة n

 $S_n=u_1+u_2+\cdots+u_n$: ب) نضع من أجل كل عدد طبيعي n غير معدوم

 $S_n = \frac{3n^2 - n}{2}$ بیّن اُنّ

 $S_n = 145$: جد العدد الطبيعي n بحيث

 u_{n+5} اكتب الحدّ الحدّ أ.3

 $\frac{u_{n+5}}{n} = 3 + \frac{13}{n}$ ب) تحقّق أنّه من أجل كل عدد طبيعي n غير معدوم:

ج) استنتج الأعداد الطبيعية n التي يكون من أجلها العدد $\frac{u_{n+5}}{n}$ طبيعيا.

المَرين الحاري عشر: (06 نقاط) بكالوريا 2013 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

.3 مُتتالية هندسية حدّها الأول $v_0=2$ وأساسها (v_n

n بدلالة v_n عبّر عن عن الم

 $\cdot(v_n)$ احسب بدلالة n الفرق $v_{n+1}-v_n$ ، ثمّ استنتج اتجاه تغيّر المتتالية (ب

 $S_n = v_0 + v_1 + \dots + v_{n-1}$:من معدوم عير معدوم عير عدد طبيعي غير معدوم 2-نضع، من أجل كل عدد طبيعي غير

أ) احسب بدلالة n المجموع S_n .

 $S_n = 80$: عين قيمة العدد الطبيعي n بحيث

ج) أثبت بالتراجع أنّه، من أجل كل عدد طبيعي n، العدد $1-3^n$ يقبل القسمة على 2.

القرين الثاني عشر: (06 نقاط) بكالوريا 2013 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

 $u_0 + u_1 + u_2 + u_3 = 34$:مُتتالية حسابية حدّها الأول u_0 وأساسها 5 بحيث (u_n)

 $u_0 - 1$

 $u_n=5n+1$ ، من أجل كل عدد طبيعي -2

 $.u_{n+1} + u_n - 8n = 4033$: حيّن العدد الطبيعي n بحيث -3

 $S = u_0 + u_1 + u_2 + \dots + u_{2013}$ -4- أحسب المجموع

 $v_n=2u_n+1$. المنتالية العددية (v_n) معرّفة على العبارة.

ا) ادرس اتجاه تغيّر المتتالية (v_n).

 $S' = v_0 + v_1 + v_2 + \dots + v_{2013}$: (ب)

ِّالْمَهِنِ الْمُالِثِ عَشَر: (06 نِفَاط) بِكَالُورِيا 2014 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

عيّن الأقتراح الصّحيح الوحيد من بين الاقتراحات الثلاثة، في كلّ حالة من الحالات الأربعة الآتية، مع التّعليل: $u_2=1$ متتالية حسابية أساسها 3 وحدّها $u_2=1$.

 $u_n = -5 + 3n$ (ب $u_n = 7 + 3n$ (ب $u_n = 1 + 3n$ (ب $u_n = 1 + 3n$ (هو: أ) هو: أ $u_n = 1 + 3n$ (ب ب المحموع $u_n = 1 + 3n$ (عدد طبيعي. المجموع $u_n = 1 + 3n$ بساوي:

 $\frac{n^2+1}{2} \left(\div \frac{n(n-1)}{2} \left(\div \frac{n^2+n}{2} \right) \right)$

x+1 ، x-2 عدد حقيقي. تكون الأعداد x+1 ، x+1 ، x+1 بهذا الترتيب حدودا متعاقبة لمتتالية هندسية إذا كان:

x = -2 (\Rightarrow x = 5 (\Rightarrow x = 3 (\Rightarrow

 (v_n) هو: $v_n = 2 \times 3^{n+1}$ أساس المتتالية هندسية معرّفة على v_n حدّها العام $v_n = 2 \times 3^{n+1}$ هو: (v_n) هو: (v_n

المَرين الرابع عشر: (06 نقاط) بكالوريا 2014 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

 $v_{n+1}=5v_n+4$ المتتالية العدية المعرّفة بما يلي: $v_0=1$ ومن أجل كل عدد طبيعي $v_0=1$ المتتالية العدية المعرّفة بما يلي: $v_0=1$ ومن أجل كل عدد طبيعي v_0 و v_1 و v_2 ، v_2 و v_2 ، v_3

 $u_n=v_n+1$ انضع من أجل كل عدد طبيعي (2)

 $u_0=2$ وحدّها الأول q=5 أ- بيّن أنّ (u_n) متتالية هندسية أساسها

 u_n بدلالة n واستنتج u_n بدلالة u_n

جـ حلّل العدد 1250 إلى جداء عو امل أوليّة واستنتج أنّه حد من حدود المتتالية (u_n) .

 $S_n=u_0+u_1+\cdots+u_{n-1}$ أ- احسب بدلالة n المجموع S_n حيث:(3

 $S_n' = v_0 + v_1 + \dots + v_{n-1}$ ب- احسب بدلالة n المجموع S_n' حيث

المَرِن الخامس عشر: (07 نقاط) بكالوريا 2015 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

 $u_0=3$ و $u_0=2$ وأساسها q حيث و u_0 و المتتالية الهندسية التي حدّها الأوّل u_0

 u_2 احسب u_1 و u_2

 u_5 اکتب u_n بدلالة u_1 ؛ ثمّ استنتج u_n

. (u_n) عيّن اتجاه تغيّر المتتالية (3

 $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$) احسب بدلالة n المجموع $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$) احسب بدلالة

 $.2 + 6 + 18 + \dots + 486$ عند المجموع: $.2 + 6 + 18 + \dots + 18$

 3^4) عيّن باقي القسمة الإقليدية على 5 لكل عدد من الأعداد 3، 3^2 ، 3^3 و 3^4

 $.3^{4k}\equiv 1$ [5] ب) استنتج أنّه لكل k من k

.5 عين الأعداد الطبيعية n التي من أجلها يكون n-3 قابلا للقسمة على 5.

المُرين السادس عشر: (06 نقاط) بكالوريا 2015 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

 $u_1-u_3=5$ و وأساسها u_1 حيث $u_2=rac{1}{2}$ وأساسها u_1 وأساسها حدّها الأوّل وأساسها u_1

 $.u_1 + u_3 = 1$ أ) بيّن أنّ) (1

 $r=-rac{5}{2}$ ب) عيّن الحدّ الأوّل u_1 ؛ ثمّ استنتج أنّ

n بدلالة u_n اكتب u_n

 $S_n=u_1+u_2+\cdots+u_n$) احسب بدلالة n المجموع $S_n=u_1+u_2+\cdots+u_n$) (أر

$$S_n = -rac{657}{2}$$
ب) عيّن قيمة العدد الطبيعي n التي يكون من أجلها

$$T_n = u_1 + 2u_2 + 3u_3 + \dots + nu_n$$
عدد طبیعي غیر معدوم، نضع عدد $n(4)$

$$(n+2)(9-5n)=-5n^2-n+18:\mathbb{N}^*$$
 من n لكل من n

$$T_n = \frac{1}{6}n(n+1)(14-5n)$$
باستعمال الاستدلال بالتراجع، أثبت أنّه لكل n من n من الاستدلال بالتراجع، أثبت أنّه لكل n

التمرين السابع عشر: (07 نقاط) بكالوريا 2016 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

 $u_n=3n-2$ نتكن $(u_n^{'})$ متتالية عددية معرّفة من أجلّ عدد طبيعي

- u_3 و u_2 ، u_1 ، u_0 احسب (1
-)بيّن أنّ المتتالية (u_n) حسابية وعيّن أساسها.
 - . (u_n) ادرس اتجاه تغيّر المتتالية (3
- بيّن أنّ العدد 1954 حدّ من حدود المتتالية (u_n) وعيّن رتبته.
- $S_n = u_0 + u_1 + u_2 + \dots + u_n$ (أ) احسب بدلالة n المجموع:
 - $.S_n=328$: بعيّن العدد n بحيث يكون

المَرين الثامن عشر: (06 نقاط) بكالوريا 2016 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

 $u_0+u_1+u_2+u_3=10$ نعتبر المُتتالية الحسابية (u_n) التي أساسها 3 وحدّها الأول u_0 وتُحقّق:

- u_0 احسب الحد الأوّل) احسب
- n اكتب الحد العام u_n بدلالة (2
- $u_n = 145$ عيّن العدد الطبيعي n بحيث: (3
- $S = u_0 + u_1 + \dots + u_{49}$ احسب المجموع S بحيث: (4
- $v_n=2u_n+3$:نعتبر المتتالية (v_n) المعرّفة على (v_n) المعتبر المتتالية (5)

 $.S' = v_0 + v_1 + \dots + v_{49}$ احسب المجموع S' بحيث:

القرين التاسع عشر: (06 نقاط) بكالوريا 2017 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

- $u_{3}=320$ و $u_{1}=20$ ألمتتالية هندسية حدودها موجبة تماما، معرّفة على $u_{1}=20$ حيث $u_{1}=20$
 - بيّن أنّ أساس المتتالية (u_n) هو 4 وحدّها الأول هو 5.
 - كاكتب عبارة الحد العام للمتتالية (u_n) بدلالة n ثمّ استنتج قيمة حدّها السابع.
 - $S=u_0+u_1+\cdots+u_n$ المجموع S حيث n المجموع (أ(3
 - $S'=u_0+u_1+\cdots+u_6$ ب استنتج قيمة المجموع S' حيث (ب

الْمَرِينِ الْعَشرونِ: (06 نَقَاط) بِكَالُورِيا 2017 الْمُوضُوعِ 02 -أَدَابِ وَفُلْسِفَة، لَغَاتَ أَجِنْبِية.

 $u_3+u_7=50$ و $u_0=-5$ متتالية حسابية معرّفة على المجموعة $\mathbb N$ بحدّها الأوّل $u_0=-5$

- (u_n) عيّن الأساس r للمتتالية عيّن الأساس
- $u_n=6n-5$ ، بیّن أنّ: من أجل كل عدد طبیعي (2
- 3) اثبت أنّ العدد 2017 حد من حدود المتتالية (u_n) ، ما هي رتبته (3
- $S=u_0+u_1+\cdots+u_n$ حيث $S=u_0+u_1+\cdots+u_n$ المجموع المجموع (4

التمرين الحادي وعشرون: (06 نقاط) بكالوريا 2017_2 الموضوع 01 -أداب وفلسفة، لغات أحنىة.

r المعرّفة على n_0 بحدها الأول u_0 وأساسها u_n

 $u_3 + u_5 = 20$ احسب الحد u_4 علما أنّ $u_5 = 20$

 $2u_4 - u_5 = 7$ احسب الحد u_5 علما أنّ:2

 u_0 استنتج قیمة r واحسب) (3

 $u_n=3n-2$ ، من أجل كل عدد طبيعي (4)تحقّق أنّ: من أجل

 $S_n=u_0+u_1+\cdots+u_n$ احسب بدلالة العدد الطبيعي n المجموع (5)

 $S_n=33$ جد العدد الطبيعي n حيث:(6

التمرين الثاني وعشرون: (06 نقاط) بكالوريا 2017_2 الموضوع 02 -أداب وفلسفة، لغات أحنبية.

في كل حالة من الحالات الأربع الآتية أقتُرحت ثلاث إجابات، واحدة فقط منها صحيحة، يُطلب تحديدها مع التعليل.

1)الحد السّادس لمتتالية حسابية أساسها 3- وحدّها الأول 1 هو:

. -11 (÷ -17 ([†]

2)مجموع 100 حد الأولى لمتتالية هندسية حدّها الأول هو 1 وأساسها 3 هو:

$$\frac{3^{100}-1}{2}$$
 (\Rightarrow $\frac{1-3^{100}}{2}$ (\Rightarrow $\frac{3^{101}-1}{2}$ (\circ

c = 4x ، b = 6x - 3 ، a = 2x + 2 : x نضع من أجل كل عدد حقيقي (3

الأعداد الحقيقية $c \cdot b \cdot a$ بهذا الترتيب تُشكل حدودا متتابعة لمتتالية حسابية عندما يكون:

$$x = \frac{3}{4} \iff x = 0 \iff x = \frac{4}{3} 6$$

المتتالية العددية (u_n) المعرّفة بـ $u_0=1$ ومن أجل كل عدد طبيعي u_n+1 ، المتتالية العددية $u_{n+1}=\frac{1}{2}$ هي متتالية:

 $\frac{1}{2}$ هندسية أساسها $\frac{1}{2}$ با هندسية ولا هندسية.

أ) حسابية أساسها 1

التمرين الثالث وعشرون: (06 نقاط) بكالوريا 2018 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

عيّن الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات التالية، مع التبرير:

 $u_n=n^2-1$ ب متتالية عددية معرفة على $(u_n)(1)$

المتتالية (u_n) : أ) متزايدة تماما ب) متناقصة تماما ج) ليست رتيبة.

q=2 وأساسها $v_1=3$ وأساسها $v_1=2$ متتالية هندسية حدّها الأوّل

عبارة الحد العام للمتتالية (v_n) هي:

$$v_n = 2 \times 3^n$$
 (c $v_n = 3 \times 2^{n-1}$ ($v_n = 3 \times 2^n$ ()

المجموع $S_n = v_1 + v_2 + \dots + v_n$ يُساوي:

 $.2(3^{n}-1)$ (ε $(2^{n}-1)$ (φ $3(2^{n}-1)$ (φ

3) صندوق به 10 كريات لانفرق بينها عند اللمس مرقمة من 11 إلى 20، نسحب عشوائيا كرية واحدة. احتمال الحصول على كرية تحمل عددا مضاعفا لـ 3 هو:

$$-\frac{7}{10}$$
 (E $\frac{3}{10}$ (\div $\frac{1}{3}$ (\dagger

احتمال الحصول على كرية تحمل عددا فرديا ومضاعفا لـ 3 هو:

$$\frac{1}{10}$$
 (ε $\frac{3}{10}$ (φ $\frac{9}{10}$ ()

التمرين الرابع وعشرون: (06 نقاط) بكالوريا 2018 الموضوع 02 -أداب وفلسفة، لغات أحنية.

حيث: q متتالية هندسية حدودها موجبة تماما، حدّها الأول u_0 وأساسها

 $.u_0 + u_1 = 30$ $u_0 \times u_2 = 576$

 u_0 بيّن أنّ $u_1=24$ ، ثمّ استنتج قيمة $u_1=24$

n بيّن أنّ q=4، ثمّ اكتب عبارة الحد العام بدلالة q=4

. (u_n) ثمّ استنتج اتجاه تغيِّر المتتالية ($u_{n+1}-u_n=18 imes 4^n$ عدد طبيعي عدد طبيعي) أثبت أنّه من أجل كل عدد طبيعي

احسب 4^4 ، ثم تحقّق أنّ العدد 1536 حد من حدود المتتالية (u_n) وعيّن رتبته.

 $S_n = u_1 + u_2 + \dots + u_n$ احسب بدلالة n المجموع:(5

التمرين الخامس وعشرون: (06 نقاط) بكالوريا 2019 الموضوع 01 -أداب وفلسفة، لغات أجنبية.

 $u_n=rac{2}{5}n-1$ بـ: \mathbb{N}^* بـن معرّفة على متتالية عددية معرّفة على (u_n)

 u_1 بيّن أنّ المتتالية u_n) حسابية أساسها $\frac{2}{5}$ يُطلب حساب حدّها الأول u_n)

2)عين رتبة الحد الذي قيمته 575.

 $S = u_1 + u_2 + \dots + u_{1440}$ احسب قيمة المجموع $S = u_1 + u_2 + \dots + u_{1440}$ احسب

 $v_n=4^{5u_n+6}$ كما يلي: \mathbb{N}^* كما المتتالية المعرّفة على المتالية المعرّفة على المتالية المعرّفة على المتالية المعرّفة على المتتالية المتالية المتالية المتتالية المتالية المت

. v_1 أي بيّن أنّ المتتالية (v_n) هندسية يُطلب تعيين أساسها وحدّها الأول أ

 $S_n = v_1 + v_2 + \dots + v_n$ ب) احسب بدلالة n المجموع:

التمرين السادس وعشرون: (06 نقاط) بكالوريا 2019 الموضوع 02 -أداب وفلسفة، لغات أجنبية.

المتتالية الحسابية التي حدّها الأول u_0 وأساسها u_n

 u_1 عيّن $u_0 + u_1 + u_2 = 6$ عيّن (1

. (u_n) عيّن الحد الأول u_0 ، ثم استنتج قيمة r أساس المتتالية (2 $u_0-3u_1=-10$) علماً أنّ

n اكتب عبارة الحد العام u_n بدلالة)

 $.u_n=2018$ عيّن قيمة n حتى يكون) (4

 (u_n) أحسب الحد الخامس عشر للمتتالية (ب

 $S_n = u_0 + u_1 + u_2 + \dots + u_n$ أحسب بدلالة n المجموع S_n حيث:

 $S_n = 96$:عيّن العدد الطبيعي n حتى يكون (6

–السلسة الأولى (جزء الحلول)– المحور: المتالبات العددية

التحضير الجيد لبكالورما: 2020

سلاسل العبقرى في الرباضيات الشعبة: آداب وفلسفة، لغات أجنبية

حل التمرين الأوّل:

 $u_n=3n+1$:متتالية معرّفة على $\mathbb N$ كما يلي (u_n <u>:ساب ،u_ ،u_ مساب /1</u>

$$u_0 = 3(0) + 1 = 0 + 1 = 1$$

$$u_1 = 3(1) + 1 = 3 + 1 = 4$$

$$.u_2 = 3(2) + 1 = 6 + 1 = 7$$

2/تبيان أنّ (س) حسابية يُطلب تعيين أساسها:

نبین أن الفرق $u_{n+1}-u_n$ عدد ثابت

 $u_n = 3n + 1$

$$u_{n+1} = 3(n+1) + 1$$

= $3n + 3 + 1 = 3n + 4$

وعليه الفرق يكون كالتالي:

$$u_{n+1} - u_n = (3n+4) - (3n+1)$$

= $3n + 4 - 3n - 1 = 3$

اذن: (u_n) حسابية أساسها 3.

 $\underline{:}(u_n)$ تعیین اتجاه تغیّر

(3>0) بمأنّ (u_n) حسابية أساسها موجب تماما فإنّها: متزايدة تماما على ١٨.

 $\underline{:}(u_n)$ التحقّق أنّ العدد 2008 حدّ من حدود المتتالية $\underline{:}(u_n)$

3n+1=2008 <u>نضع:</u> $u_n=2008$

3n = 2008 - 1 ومنه:

 $(u_{669} = 2008) \ n = \frac{2007}{3} = 669 \in \mathbb{N}$ <u>أي:</u> إذن: 2008 حد من حدود المتتالية (u_n) .

 u_0 رتبته: 670 = 1 + 669 لأنّ الحد الأوّل هو u_0

4/حساب المجموع،

 $S = u_0 + u_1 + u_2 + \cdots + u_{669}$

 $S = u_0 + u_1 + \dots + u_{669}$ $= (669 - 0 + 1) \left(\frac{u_0 + u_{669}}{2} \right)$

 $=670\left(\frac{1+2008}{2}\right)$

 $=670\left(\frac{2009}{2}\right)$

= 670(1004,5) = 673015

حل التمرين الثان<u>ي</u>:

 $(u_1 = 7)$ $u_{n+1} = 2u_n + 1$ ندينا: (u_n) متتالية معرّفة ب

<u>1) حساب سے ، سے رہے وہ 1</u>

 $.u_2 = 2u_1 + 1 = 2(7) + 1 = 15$

 $.u_3 = 2u_2 + 1 = 2(15) + 1 = 31$ $.u_4 = 2u_3 + 1 = 2(31) + 1 = 63 \blacktriangleleft$ $v_n = u_n + 1$ متتالية معرّفة كما يأتي: (v_n)(2 البات أنّ (v_n) متتالية هندسية يُطلب تعيين أساسها أ-اثبات v_1 وحدها الأول v_1 :

طـ01 نُبين أنّ الحاصل $\frac{v_{n+1}}{v_n}$ عدد ثابت.

 $v_n = u_n + 1$ $v_{n+1} = u_{n+1} + 1$ $=(2u_n+1)+1$ $= 2u_n + 2 = 2(u_n + 1)$ $\left[\frac{v_{n+1}}{v_n} = \frac{2(u_n+1)}{u_n+1} = 2\right]$ وعليه:

وحدّها الأول q=2 وحدّها الأول $u_{n+1}-u_n=(3n+4)-(3n+1)$ $.v_1 = u_1 + 1 = 7 + 1 = 8$

 $\underline{\cdot n}$ بدلالة v_n بدلالة بارة الحد العام

بمأنّ: (v_n) متتالية هندسية أساسها 2 وحدّها الأول $v_n = v_1 \times q^{n-1}$ فاِنّ $v_1 = 8$ $v_n = 8 \times 2^{n-1}$ بالتعويض نجد:

 u_n بدلاله u_n

 $v_n = u_n + 1$. $u_n = v_n - 1 = 8 \times 2^{n-1} - 1$ ومنه:

 $S_n = v_1 + v_2 + \cdots + v_n$ ج-دلالة $S_n = v_1 + v_2 + \cdots + v_n$ بدلالة

 $S_n = v_1 + v_2 + \dots + v_n$ $= v_1 \left(\frac{1 - q^{n-1+1}}{1 - q} \right)$ $= 8\left(\frac{1-2^n}{1-2}\right) = \frac{8}{-1}(1-2^n)$ $.\overline{S_n = 8(2^n - 1)}$ اِذن: $S_n = 1016$ علماً أنّn د-تعيين n علماً $8(2^n - 1) = 1016$ معناه: $S_n = 1016$ $2^n - 1 = \frac{1016}{8}$ ومنه: $2^n - 1 = 127$ أي: $2^n = 128 = 2^7$ وعليه: $(128 = 2^7)$ (128) .($S_7 = 1016$) n = 7

(q>0) موجب يعيينُ أساسُ المتتالية (u_n) وحدّها الأول u_0 علماً -1 $\underline{u}_5 = 576$ و $u_3 = 144$ $u_n = u_p \times q^{n-p}$ لـدينـا $u_5 = u_3 \times q^{5-3}$ ومنه: $q^2 = \frac{576}{144} = 4$ ومنه: $q^2 = \frac{576}{144} = 4$ (مقبول) $q = \sqrt{4} = 2 > 0$ $q = -\sqrt{4} = -2$ (مرفوض) إذن: $q = -\sqrt{4}$ u_0 يعيين الحد الأول $u_3=u_0 imes q^3$ دينا: $u_n=u_0 imes q^n$ دينا $u_0 = \frac{u_3}{q^3} = \frac{144}{2^3} = \frac{144}{8} = 18$ إذن: $u_5 = u_0 \times q^5$ <u>او:</u> $u_0 = \frac{u_5}{a^5} = \frac{576}{2^5} = \frac{576}{32} = 18$ نجد: التحقق أنّه من أجل كل عدد طبيعي n، $\underline{:}u_n=18\overline{\times 2^n}$ $u_n = 18 \times 2^n$ ومنه: $u_n = u_0 \times q^n$ ادينا 3-حساب بدلالة n المجموع، $\underline{:}S_n = u_0 + u_1 + \dots + u_n$ $S_n = u_0 + u_1 + \dots + u_n$ $= u_0 \left(\frac{1 - q^{n - 0 + 1}}{1 - q} \right)$ $= 18 \left(\frac{1 - 2^{n+1}}{1 - 2} \right)$ $=\frac{18}{1}(1-2^{n+1})$ $=-18(1-2^{n+1})=18(2^{n+1}-1)$ $S_n=1134$ استنتاج قيمة العدد الطبيعي n حيث $18(2^{n+1} - \overline{1}) = 1134$ <u>معناه:</u> $S_n = 1134$ $2^{n+1} - 1 = \frac{1134}{18}$ ومنه: $2^{n+1} - 1 = 63$ أي: $2^{n+1} = 64 = 2^6$ ومنه: n + 1 = 6.($S_5 = 1134$) n = 5حل التمرين الخامس: الدين: كسابية معرّفة على $(u_n)(I)$ بالحدين:

 $.u_{15} = 46$ $u_{10} = 31$ $\underline{:}(u_n)$ يعيين أساس المتتالية $\underline{:}$ $u_n = u_p + (n-p)r$ الدينا:

حل التمرين الثالث: متتالية حسابية معرّفة على \mathbb{N}^* بحدّها الأول (u_n) $.u_2 - 2u_5 = 19$ وبالعلاقة $u_1 = 2$ $\underline{:}(u_n)$ اً-حساب الأساس r للمتتالية (1 نكتب كل من u_2 و u_5 بدلالة الحد الأول u_1 المُعطى $u_{m{n}}=u_1+(m{n}-1)r$ حسب العلاقة $(u_2 = u_1 + (2-1)r = 2 + r)$ $u_5 = u_1 + (5-1)r = 2 + 4r$ $u_2 - 2 \quad u_5 = 19$ العلاقة (2+r) - 2(2+4r) = 19 تُصبح: 2+r-4-8r=19 ومنه: $r = \frac{21}{-7} = -3$ <u>إذن:</u> -7r = 21ب-حساب الحد العاشر: بمأنّ الحد الأوّل هو u_1 ، $u_{\mathbf{10}} = u_1 + (\mathbf{10} - 1)r$ إذن الحد ا**لعاشر** هو $= u_1 + 9r$ = 2 + 9(-3) = 2 - 27 = -25 u_n بدلاله عباره u_n بدلاله u_n $\boxed{u_n = u_1 + (n-1)r}$ دينا: $u_n = 2 + (n-1)(-3)$ ومنه: . $u_n = -3n + 5$ إذن: (u_n) عبيان أنّ العدد (2008-) هو حداً من حدود (3 $|u_n = -2008|$ نضع: -3n + 5 = -2008 نجد: -3n = -2008 - 5 ومنه: $n = \frac{-2013}{-3} = 671 \in \mathbb{N}$: $(u_{671} = -2008)$ (u_n) حد من حدود المتتالية (2008). رتبته: 671 لأنّ الحد الأوّل هو u_1 . $S = u_1 + u_2 + \dots + u_{671}$ عساب المجموع؛ (4 $S = u_1 + u_2 + \dots + u_{671}$ $= (671 - 1 + 1) \left(\frac{u_1 + u_{671}}{2}\right)$ $=671\left(\frac{2+(-2008)}{2}\right)$ $=671\left(\frac{-2006}{2}\right)$ = 671(-1003) = -673013

مر التمريز الرابع: (u_n) متتالية هندسية معرفة على (u_n)

$$\frac{1}{2}S' = v_0 + v_1 + \dots + v_n$$

$$S' = v_0 + v_1 + \dots + v_n$$

$$= v_0 \left(\frac{1 - q^{n - 0 + 1}}{1 - q}\right)$$

$$= 2\left(\frac{1 - 8^{n + 1}}{1 - 8}\right)$$

$$= \frac{2}{-7}(1 - 8^{n + 1}) = \frac{2}{7}(8^{n + 1} - 1)$$

حل التمرين السادس:

متتالية هندسية معرفة على مجموعة الأعداد (u_n) الطبيعية M، أساسها q وحدّها الأول u_0 حيث: $.u_4 = 48$ و $u_1 = 6$

 (u_n) الأساس والحدّ الأوّل للمتتالية ياغير الأساس والحدّ الأوّل المتتالية $u_n = u_p \times q^{n-p}$ نعلم أنّ

 $u_4 = u_1 \times q^{4-1}$ ومنه:

 $q^3 = \frac{48}{6} = 8$ و عليه: $q^3 = \frac{48}{6} = 8$ [q=2] <u>نن:</u> [q=2] <u>نان</u> $[q^3=2]$ <u>فإنّ</u> [q=2]

 $\underline{u_0}$ عساب الحد الأوّل u_0 $\underline{u_0}$ عساب الحد الأوّل $u_1 = u_0 \times q^1$ ومنه: $u_n = u_0 \times q^n$ الدينا:

 $|u_0 = \frac{u_1}{a^1} = \frac{6}{2} = 3 | \underline{u_0} = \frac{u_1}{a^2} = \frac{6}{2} = \frac{3}{2} | \underline{u_0} = \frac{u_1}{a^2} = \frac{1}{2} | \underline{u_0} = \frac{u_1}{a^2} = \frac{6}{2} = \frac{3}{2} | \underline{u_0} = \frac{u_1}{a^2} = \frac{4}{2} | \underline{u_0} = \frac{u_1}{a^2} = \frac{u$

 $u_4 = u_0 \times q^4$ ومنه: $u_n = u_0 \times q^n$ أو

 $u_0 = \frac{u_4}{a^4} = \frac{48}{16} = 3$ ويكون:

ب-استنتاج أنّ عبارة الحدّ العام لـ (u_n) هي، $\underline{u}_n=3 imes 2^n$

 $[u_n = 3 \times 2^n]$ بنن $u_n = u_0 \times q^n$ دينا

2.أ-علماً أنّ $256=2^8$ ؛ تبيّان أنّ العدد 768 هو حدّ

 $:(u_n)$ من حدود المتتالية

 $3 \times 2^n = 768$ <u>نجد:</u> $u_n = 768$

 $2^n = \frac{768}{2} = 256$ ومنه:

وعليه: $2^8 = 256 (لأنّ 256 = 28)$

 $(u_8 = 768)$ $n = 8 \in \mathbb{N}$ وبالنالي:

إذن: 768 حدّ من حدود المتتالية (u_n) .

ب-حساب المجموع ك حيث،

 $\underline{:}S = u_0 + u_1 + \dots + u_7$

 $S = u_0 + u_1 + \dots + u_7$ $=u_0\left(\frac{1-q^{7-0+1}}{1-q}\right)$

 $=3\left(\frac{1-2^8}{1-2}\right)$

 $\overline{10} = \frac{3}{10} (1 - 256) = -3(-255) = 765$

 $u_{15} = u_{10} + (15 - 10)r$ ومنه: 46 = 31 + 5r وعليه:

 $r = \frac{15}{5} = 3$ إذن r = 46 - 31 وبالتالي:

 $r = \frac{u_n - u_p}{n - p} = \frac{u_{15} - u_{10}}{15 - 10} = \frac{46 - 31}{5} = \frac{15}{5} = 3$

 $u_{10} = u_0 + 10r$ ومنه: $u_n = u_0 + nr$

 $u_0 = u_{10} - 10r$ = 31 - 10(3) = 31 - 30 = 1

 $u_{15} = u_0 + 15r$ ومنه: $u_n = u_0 + nr$

 $u_0 = u_{15} - 15r$ = 46 - 15(3) = 46 - 45 = 1

(عبارة الحد العام) عبارة الحد العام) عبارة الحد العام)

 $u_n = 1 + 3n$ <u>اذن:</u> $u_n = u_0 + nr$

 $\underline{:}(u_n)$ من حدود المتتالية 6028 حدّ من حدود المتتالية

6028 = 1 + 3n نضع: $u_n = 6028$

ومنه: 3n = 6027

 $n = \frac{6027}{3} = 2009 \in \mathbb{N}$ وبالتالي:

 $(u_{2009} = 6028)$

 (u_n) العدد 6028 حد من حدود المتتالية

4-حساب المجموع ك،

 $\underline{:}S = u_0 + u_1 + \dots + u_{2009}$

 $S = u_0 + u_1 + \dots + u_{2009}$

 $= (2009 - 0 + 1) \left(\frac{u_0 + u_{2009}}{2} \right)$

 $= (2010) \left(\frac{1+6028}{2} \right)$

 $= (2010) \left(\frac{6029}{2}\right)$

= (2010)(3014,5) = 6059145

 $v_n = 2 \times 8^n$: ب آب معرّفة على معرّفة على متتالية معرّفة على المتتالية المتالية المتتالية المتتالية المتتالية المتالية المتتالية المتتالية المتتالية المتتالية المتالية المتالية

رىيان أنّ (v_n) متتالية هندسية يُطلب تعيين أساسها -1 v_0 وحدها الأول

غبین أنّ حاصل القسمة $\frac{v_{n+1}}{v_n}$ عدد ثابت:

 $v_{n+1}=2\times 8^{n+1}$ رومنه: $v_n=2\times 8^n$ لدينا: $v_n=2\times 8^n$ ومنه: $v_{n+1}=\frac{2\times 8^{n+1}}{v_n}=\frac{8^{n+1}}{2\times 8^n}=\frac{8^{n+1}}{8^n}=\frac{8^n\times 8^1}{8^n}=8$ وبالتالي:

الأوّل q=8 وحدّها الأوّل إ<u>نن:</u> (v_n) هندسية، أساسها

 $v_0 = 2 \times 8^0 = 2 \times 1 = 2$ s' المجموع n المجموع s'

 $\underline{:n}$ بدلالة u_n بدلالة u_n $[u_n = 3^n]$ اذن: $u_n = u_0 \times q^n$ لدينا: $S_1 = u_0 + u_1 + \dots + u_9$.2. $S_1 = u_0 + u_1 + \dots + u_9$ $= u_0 \left(\frac{1 - q^{9 - 0 + 1}}{1 - a} \right)$ $=1\left(\frac{1-3^{10}}{1-3}\right)$ $=1\left(\frac{1-3^{10}}{-2}\right)$ $=\frac{1}{3}(1-3^{10})$ $= \frac{1}{2}(3^{10} - 1) = \frac{1}{2}(59048) = 29524$ ب) متتالية عددية معرفة على (v_n) بحدّها العآم: $v_n = 1 - 5n$ السها: متالية حسابية يُطلب تعيين أساسها: (v_n) متتالية حسابية يُطلب تعيين أساسها: نُبين أنّ الفرق $v_{n+1}-v_n$ عدد ثابت $v_n = 1 - 5n$ لدينا: $v_{n+1} = 1 - 5(n+1)$ = 1 - 5n - 5 = -4 - 5n $v_{n+1} - v_n = (-4 - 5n) - (1 - 5n)$ = -4 - 5n - 1 + 5n = -5 $v_{n+1} = v_n - 5|_{\underline{\cdot}}$ $\lfloor r = -5
floor$ أنن متتالية $oldsymbol{c}$ متتالية $oldsymbol{c}$ استنتاج اتجاه تغيرها: بمأنّ (v_n) حسابية أساسها 5- سالب تماما فإنها متناقصة تماما على ١٨. $S_2 = v_0 + v_1 + \dots + v_9$ حساب المجموع، 2 $S_2 = v_0 + v_1 + \dots + v_9$ $= (9-0+1)\left(\frac{v_0+v_9}{2}\right)$ $=10\left(\frac{1-44}{2}\right)$ $=\frac{10}{2}(1-44)=5(-43)=-215$ $(v_9 = 1 - 5(9) = 1 - 45 = -44)$ ملاحظة ج) نعتبر المتتالية (k_n) المعرّفة على \mathbb{N} بحدّها العام: $.k_n = 1 + 3^n - 5n$ $\underline{k}_n = u_n + v_n$ التحقّق أنّ، $u_n = 3^n$ $v_n = 1 - 5n$ الدينا: $u_3 = u_0 \times q^3$ $k_n = 1 + 3^n - 5n$ $=3^n + (1-5n)$ $= u_n + v_n$ 11

 $\int v_0 = 4$ $v_{n+1} = 2v_n - 1$:- متتالية معرفة بـ (v_n).3 v_3 <u>ا</u>-حساب v_1 <u>و v_2 </u> $v_1 = 2v_0 - 1 = 2(4) - 1 = 7$ $v_2 = 2v_1 - 1 = 2(7) - 1 = 13$ $v_3 = 2v_2 - 1 = 2(13) - 1 = 25$ ب-البرهان بالتراجع أنّه من أجل كل عدد طبيعي n، $\underline{:}v_n=3\times 2^n+\overline{1}$ P(n) ب فده الخاصية ب (n = 0) المرحلة 01: (من أجل $v_0 = 3 \times 2^0 + 1 = 3(1) + 1 = 4$ لدينا: <u>إذن:</u>(P(0) صحيحة. المرحلة 02: • نفرض صحة الخاصية P(n) أي: (فرضية التراجع) $v_n = 3 \times 2^n + 1$ • $\overline{P(n+1)}$ أي: $v_{n+1} = 3 \times 2^{n+1} + 1$ $v_{n+1} = 2v_n$ البرهان: $= 2(3 \times 2^{n} + 1) - 1$ $= 2^1 \times 3 \times 2^n + 2 - 1$ $= 3 \times 2^{n+1} + 1$ P(n+1) صحيحة. الخلاصة: حسب مبدأ الاستدلال بالتراجع من أجل كل $v_n = 3 \times 2^n + 1$ عدد طبیعی n عدد طبیعی جـحساب المجموع ع حيث، $\underline{:}S' = v_0 + v_1 + \cdots + v_7$ $v_n = 3 \times 2^n + 1 = u_n + 1$ نلاحظ أنّ $S' = v_0 + v_1 + \dots + v_7$ $= (u_0 + 1) + (u_1 + 1) + \dots + (u_7 + 1)$ $= (u_0 + u_1 + \dots + u_7) + 8$ = S + 8 = 765 + 8 = 773حل التمرين السابع: u_0 متتالية هندسية أساسها 3 وحدّها الأول (u_n) $.u_0 + u_3 = 28$ بحیث: $:u_0$ حساب.1 $u_n = u_0 \times q^n$ ومنه: $= u_0 \times 3^3 = 27u_0$ $|u_0 + 27u_0 = 28$ العلاقة $|u_0 + u_3 = 28$

 $28u_0 = 28$ ومنه:

 $|u_0 = 1|$ إذن:

حل التمرين التاسع:

لدینا: $c \cdot b \cdot a$ ثُلاثة حدود متتابعة لمتتالیة متزایدة a + b + c = 9 حیث: a + b + c = 9

1.أ) حساب b:

a+c=2b حسب خاصية الوسط الحسابي الدينا: a+c=2b+b=9 غُصبح a+b+c=9

b = 3 <u>إذن:</u> b = 9

+r +r عتابة a و a بدلالة a

a imes c = -16:ب) علماً أنّ:a imes c = -16 و ما سبق: a = 3 - r و ما سبق:

 $(3-r) \times (3+r) = -16$ غُکافئ $a \times c = -16$ ومنه: $a \times c = -16$ وعليه: $a \times c = -16$ وعليه: $a \times c = -16$

ري<u>د :</u> ويكون: 25 = r²

 $r = \sqrt{25} = 5$ وبالتالي:

 $r = -\sqrt{25} = -5$ (مرفوض)

r = 5 ($\frac{1}{2}$ المتتالية حسابية متزايدة)

استنتاج <u>a وc:</u>

a = -2 روa = 3 - r الديناa = 3 - r والحديث a = 3 - r الديناa = 3 - r والحديث والحديث المراكب a = 3 - r والحديث و

وأساسها 5.

 $\left\{ egin{aligned} u_1 = b = 3 \ u_2 = c = 8 \end{aligned}
ight. \, \left\{ egin{aligned} u_0 = -2 = a \ \frac{1}{5} & = r \end{aligned}
ight.$

 u_n بدلالة u_n التعبّير عن الحدّ العام المعبّير عن الحدّ العام

 $[u_n = -2 + 5n]$ <u>اذن:</u> $u_n = u_0 + nr$

 $.u_{15} = -2 + 5(15) = -2 + 75 = 73$

 $S = u_0 + u_1 + \cdots + u_{15}$ استنتاج المجموع،

 $S = u_0 + u_1 + \dots + u_{15}$

 $= (15 - 0 + 1) \left(\frac{u_0 + u_{15}}{2} \right)$

 $=16\left(\frac{-2+73}{2}\right)$

= 16(35,5) = 568

متتالية عددية معرفة على N بالعلاقة: (v_n) .3

 $8v_n - u_n = 0$

 $S = k_0 + k_1 + \dots + k_9$ حساب المجموع، $k_n = u_n + v_n$ لدينا:

 $S = k_0 + k_1 + \dots + k_9$ $= (u_0 + v_0) + (u_1 + v_1) + \dots + (u_9 + v_9)$ $= (u_0 + u_1 + \dots + u_9) + (v_0 + v_1 + \dots + v_9)$ $= S_1 + S_2$ = 29524 - 215 = 29309

حل التمرين الثامن:

لدينا: (u_n) و (v_n) المتتاليتان العدديتان المعرّفتان على الدينا: $u_n=-2n$ و $v_n=3^{-2n}$. $v_n=3^{u_n}$ (نلاحظ أنّ $v_n=3^{u_n}$)

تعيين في كلّ حالة من الحالات الخمس الاقتراح الصحيح من بين الاقتراحات الثلاث مع التعليل:

 $u_n = -2n$ ينين:

 $u_{n+1} = -2(n+1) = -2n-2$

 $u_{n+1} - u_n = (-2n - 2) - (-2n)$ = -2n - 2 + 2n = -2

انن: (u_n) هي متتالية حسابية.

2) بمان (u_n) معرّفة على \mathbb{N} ، فحدّها الأول هو u_0 ، وبالتالي: حدها الخامس والأربعون

 $. u_{44} = -2(44) = -88$ هو:

حسب السؤال 1) الدينا: (u_n) متتالية حسابية،

 $u_0 + u_1 + \dots + u_n = (n - 0 + 1) \left(\frac{u_0 + u_n}{2}\right) \frac{1}{2}$ $= (n + 1) \left(\frac{0 + (-2n)}{2}\right)$ $= (n + 1) \left(\frac{-2n}{2}\right)$ = (n + 1)(-n) $= -n^2 - n$

 $q=rac{v_{n+1}}{v_n}$ متتالية هندسية أساسها (v_n) 4

 $v_{n+1} = 3^{-2(n+1)}$ ومنه: $v_n = 3^{-2n}$ الدينا: $v_n = 3^{-2n}$

 $= 3^{-2n+(-2)} = 3^{-2n} \times 3^{-2}$

بالتعويض نجد<u>:</u>

 $q = \frac{v_{n+1}}{v_n} = \frac{3^{-2n} \times 3^{-2}}{3^{-2n}} = 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

المتتالية (v_n) متزايدة تماما)

 $v_{n+1} - v_n = (3^{-2n} \times 3^{-2}) - (3^{-2n})$ = $3^{-2n}(3^{-2} - 1)$ = $3^{-2n} \left(\frac{1}{9} - 1\right) = \frac{-8}{9} \times 3^{-2n} < 0$

ب) $S_n=u_1+u_2+\cdots+u_n$ ب) ب غير معدوم) $S_n = u_1 + u_2 + \dots + u_n$ $= (n-1+1)\left(\frac{u_1+u_n}{2}\right)$ $=n\left(\frac{1+(3n-2)}{2}\right)$ $= n\left(\frac{3n-1}{2}\right) = \frac{n(3n-1)}{2} = \frac{3n^2 - n}{2}$ $S_n=145$ ايجاد العدد الطبيعى n بحيث، $\frac{3n^2-n}{2} = 145$ معناه: $S_n = 145$ (*)--- $3n^2 - n - 290 = 0$ نحل المعادلة (*): نحسب المميز <u>\(\Delta \)</u>: $\Delta = (-1)^2 - 4(3)(-290) = 1 + 3480 = 3481 > 0$ للمعادلة (*) حلين متمايزين هما: $n' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{3481}}{2(3)} = \frac{1+59}{6} = \frac{60}{6} = 10 \in \mathbb{N}$ $n'' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{3481}}{2(3)} = \frac{1 - 59}{6} = \frac{-29}{3} \notin \mathbb{N}$.($S_{10} = 145$) n = 10 \underline{n} بدلالة u_{n+5} بدلالة ياء. $u_n = 3n - 2$ $u_{n+5} = 3(n+5) - 2$ ومنه: =3n+15-2=3n+13 $|u_{n+5} = 3n + 13|$ إذن: ب) التحقّق أنّه من أجل كل عدد طبيعي n غير معدوم، $\frac{u_{n+5}}{n} = 3 + \frac{13}{n}$ $\frac{u_{n+1}}{n} = \frac{3n+13}{n} = \frac{3n}{n} + \frac{13}{n} = 3 + \frac{13}{n}$ ج) استنتاج الأعداد الطبيعية n التي يكون من أجلها العدد سيعيا: $3 + \frac{13}{n} \in \mathbb{N}$ معناه: $\frac{u_{n+1}}{n} \in \mathbb{N}$ $\frac{13}{n} \in \mathbb{N}$ ومنه: $n \in \{1; 13\}$ أي: $n \in D_{13}$ (قيم n هي قواسم العدد (13) حل التمرين الحادي عشر:

متتالية هندُسية حدّها الأول $v_0=2$ وأساسها 3.

13

 v_n بدلالة v_n بدلالة v_n بدلالة براء (1-1)

 $\dot{z} : S' = v_0 + v_1 + \dots + v_{15}$ حساب المجموع، $v_n = \frac{1}{8}u_n$ ومنه: $8v_n - u_n = 0$ $\mathbf{S}_{n} = \frac{3n^{2}-n}{2}$ نَبِيّان أَنّ، $\mathbf{S}' = \mathbf{v}_{0} + \mathbf{v}_{1} + \cdots + \mathbf{v}_{15}$ $=\frac{1}{8}u_0+\frac{1}{8}u_1+\cdots+\frac{1}{8}u_{15}$ $=\frac{1}{9}(u_0+u_1+\cdots+u_{15})$ $= \frac{1}{8}S = \frac{1}{8}(568) = 71$ حل التمرين العاشر: متتالية حسابية متزايدة، أساسها γ ، حدها الأول (u_n) $u_3 = 7$ و u_1 $T_1=u_1 imes u_5$ الجدائين راء بدلالة الجدائين أ.1 $: T_2 = u_2 \times u_4$ $u_n = u_p + (n-p)r$ لدينا: $u_n = \boldsymbol{u_3} + (n-3)r$ ومنه: $u_1 = u_3 + (1 - 3)r = 7 - 2r$ $u_2 = \mathbf{u_3} + (2 - 3)r = 7 - r$ $u_4 = \mathbf{u}_3 + (4-3)r = 7 + r$ وبالتالي: $T_1 = u_1 \times u_5$ =(7-2r)(7+2r) $= 7^2 - (2r)^2 = 49 - 4r^2$ $T_2 = u_2 \times u_4$ = (7-r)(7+r) $= 7^2 - (r)^2 = 49 - r^2$ $T_2 - T_1 = 27$ ب) تعيّين الأساس T بحيث، $T_2 - T_1 = 27$ لدينا: $(49-r^2)-(49-4r^2)=27$ تُكافئ: $49 - r^2 - 49 + 4r^2 = 27$ ومنه: $r^2 = 9$ أي: $r^2 = \frac{27}{3}$ $r = -\sqrt{9} = -3$ وبالتالي: $r = \sqrt{9} = 3$ وبمأنّ (u_n) حسابية متزايدة (أساسها موجب) [r = 3] فإنّ: r = 3 بوضع. اً) كتابة عبارة الحدّ العام u_n بدلالة n: [n=13] الدينا: $[u_n]$ متتالية [n=13] أساسها [n=13] متتالية [n=13] أو [n=13] $u_1 = 7 - 2(3) = 1$ $u_n = u_1 + (n-1)r$ فإنّ $u_n = 1 + (n-1)(3)$ بالتعویض نجد: $[u_n = 3n - 2]$ إذن: $v_n = 2 \times 3^n$ انن $v_n = v_0 \times q^n$ الدينا:

إذن: حسب مبدأ الاستدلال بالتراجع من أجل كل عدد طبيعي n، العدد $1-3^n$ يقبل القسمة على 2. حل التمرين الثاني عشر: متتالية $\frac{\mathbf{v}_0}{\mathbf{v}_0}$ حدّها الأول u_0 وأساسها 5 بحيث: $.u_0 + u_1 + u_2 + u_3 = 34$ <u>:ساب 1</u> u_0 و u_3 بدلالة الحدود u_1 نكتب الحدود u_2 ، u_2 ، u_3 $u_n = u_0 + nr$ $(u_1 = u_0 + r = u_0 + 5)$ $\{u_2 = u_0 + 2r = u_0 + 10\}$ ومنه: $(u_3 = u_0 + 3r = u_0 + 15)$ $u_0 + u_1 + u_2 + u_3 = 34$ $u_0 + (u_0 + 5) + (u_0 + 10) + (u_0 + 15) = 34$ $4u_0 = 4$ ومنه: $4u_0 = 34 - 30$ ومنه: $[u_0 = 1]$ إذن: 2-تبيّان أنّه، من أجل كل عدد طبيعي n، $\underline{:}u_n=5n+1$ $[u_n = 1 + 5n]$ الدينا: $u_n = u_0 + nr$ الدينا: 3-تعيّين العدد الطبيعي n بحيث، $\underline{u}_{n+1} + u_n - 8n = 4033$ $u_n = 5n + 1$ لدينا: $u_{n+1} = 5(n+1) + 1 = 5n + 6$ $u_{n+1} + u_n - 8n = 4033$ <u>دينا:</u> (5n+6) + (5n+1) - 8n = 40337 + 2n = 4033 ومنه: وعليه: 2016 = 2n إذن:| 2013 = n| 4-حساب المجموع، $:S = u_0 + u_1 + u_2 + \cdots + u_{2013}$ $u_{2013} = 5(2013) + 1 = 10066$ <u>لدينا:</u> $S = u_0 + u_1 + \dots + u_{2013}$ $= (2013 - 0 + 1) \left(\frac{u_0 + u_{2013}}{2} \right)$ $=\frac{2014}{2}(1+10066)$ = 1007(10067) = 10137469العبارة: $\mathbb N$ معرّفة على (v_n) معرّفة العددية $3^{n+1}-1=3^n imes 3^1-1$ $v_n = 2u_n + 1$ (v_n) دراسة اتجاه تغيّر المتتالية $v_{n+1} - v_n$ ندرس إشارة الفرق $v_n = 2u_n + 1$ لدينا: ر الدينا: $u_{n+1} = u_n + 5$ كُلْنّ $u_{n+1} = u_n + 5$ **14** $v_{n+1} = 2u_{n+1} + 1$

 $v_{n+1}-v_n$ الفرق n حساب بدلالة n $v_n = 2 \times 3^n$ $v_{n+1} = 2 \times 3^{n+1} = 2 \times 3^n \times 3^1$ $v_{n+1} - v_n = (6 \times 3^n) - (2 \times 3^n)$ و عليه: $= 4 \times 3^n$ $v_{n+1} - v_n = 4 \times 3^n$ إذن: $(\overline{v_n})$ استنتاج اتجاه تغیّر المتتالیة $v_{n+1} - v_n = 4 \times 3^n > 0$ بمأنّ: \mathbb{N} فإنّ: (v_n) متزايدة تماماً على عدد طبیعی n ، $S_n=v_0+v_1+\cdots+v_{n-1}$ -2 غير معدوم. S_n المجموع n: $S_n = v_0 + v_1 + \dots + v_{n-1}$ $= v_0 \left(\frac{1 - q^{(n-1) - 0 + 1}}{1 - q} \right)$ $=2\left(\frac{1-3^n}{1-3}\right)$ $=\frac{2}{3}(1-3^n)$ $=-(1-3^n)=3^n-1$ $S_n = 80$ ب تعيّين قيمة العدد الطبيعي n بحيث، $\overline{3^n - 1} = \overline{80}$ معناه: $S_n = 80$ ومنه: $3^n = 81$ (لدينا: $3^n = 81$) $3^n = 3^4$: (5) ($S_4 = 80$) n = 4ج) اثبات بالتراجع أنه، من أجل كل عدد طبيعي ، العدد $1-3^n$ يقبل القسمة على 2: P(n)نسمي هذه الخاصية n = 0 المرحلة 01: من أجل $3^0 - 1 = 1 - 1 = 0$ و $\frac{0}{2}$ يقبل القسمة على 2، إذن: P(0) صحيحة. المرحلة 02: • نفرض صحة الخاصية P(n) أي: $1-3^n$ يقبل القسمة على 2 (2k) (فرضية التراجع) • ونبرهن صحة الخاصية P(n+1) أي: .(3ⁿ⁺¹ - 1 = 2k') على 2 يقبل القسمة على 3 3^{n+1} - 1 البرهان: $= (2k + 1) \times 3 - 1$

= 6k + 3 - 1

= 2(3k + 1)

(k' = 3k + 1)

بالتالي: P(n+1) صحيحة.

= 6k + 2

=2k'

عدد حقیقي. $\chi(3)$

الأعداد x - 2، $x \cdot x - 2$ بهذا الترتيب حدودا متعاقبة $(x - 2) \times (x + 1) = x^2$ لمتتالية هندسية معناه: $x^2 + x - 2x - 2 = x^2$ ومنه: -x - 2 = 0 وعليه: x - 2 = 0 وبالتالي: x - 2 = 0

x=-2 (جن الاقتراح الصحيح هو الاقتراح جن $S'=v_0+v_1+\cdots+v_{2013}$ $=(2u_0+1)+(2u_1$

 $q = \frac{v_{n+1}}{v_n} = \frac{2 \times 3^{(n+1)+1}}{2 \times 3^{n+1}}$: $\frac{2 \times 3^{n+1} \times 3^1}{2 \times 3^{n+1}} = 3$ إذن: الاقتراح الصحيح هو الاقتراح بين الاقتراح الصحيح هو الاقتراح بين الاقتراح الصحيح المستحيد على المستحيد المستحيد على المستح

 $v_n = 2 \times 3^{n+1}$ الطريقة 20: لدينا:

 $v_{n+1} = 2 \times 3^{(n+1)+1}$ = $2 \times 3^{(n+1)} \times 3^1 = v_n \times 3$

 $|v_{n+1} = 3v_n|$ <u>أي:</u> $|v_{n+1} = 3v_n|$ إذن: الاقتراح الصحيح هو الاقتراح ب

مل التمرين الرابع عشر:

المتتالية العُددية المعرّفة بما يلي: v_n المتتالية $v_0 = 1$ $v_{n+1} = 5v_n + 4$

 v_3 و v_2 <u>د</u> v_1 عود (1

 $.v_1 = 5v_0 + 4 = 5(1) + 4 = 5 + 4 = 9$ $.v_2 = 5v_1 + 4 = 5(9) + 4 = 45 + 4 = 49$ $.v_3 = 5v_2 + 4 = 5(49) + 4 = 245 + 4 = 249$ $.u_n = v_n + 1$

q=5 متتالية هندسية أساسها (u_n) متتالية u_n متتالية u_n وحدّها الأول $u_0=2$

طـ $\frac{u_{n+1}}{u_n}$ عدد ثابت عدد ثابت.

 $u_n = v_n + 1$ $u_{n+1} = v_{n+1} + 1$ $= (5v_n + 4) + 1$ $= 5v_n + 5 = 5(v_n + 1)$ $\frac{u_{n+1}}{u_n} = \frac{5(v_n + 1)}{v_n + 1} = 5$

إذن: (v_n) متتالية هندسية أساسها q=5 وحدّها الأول $u_0=v_0+1=1+1=2$

15

 $\overset{\circ}{u}_n$ بدلالة u_n

 $u_0=2$ وحدّها الأول $u_0=2$ ، هندسية أساسها وحدّها الأول وعدّ

 $v_{n+1} = 2(u_n + 5) + 1 = 2u_n + 11$ $v_{n+1} - v_n = (2u_n + 11) - (2u_n + 1) = 10 > \mathbf{0}$

انن: (v_n) متزایدة تماما

<u>ب) حساب المجموع،</u>

 $\underline{:}S' = v_0 + v_1 + v_2 + \dots + v_{2013}$ $S' = v_0 + v_1 + \dots + v_{2013} \qquad \underline{:}$ $= (2u_0 + 1) + (2u_1 + 1) + \dots + (2u_{2013} + 1)$ $= 2(u_0 + u_1 + \dots + u_{2013}) + 1(2013 - 0 + 1)$ = 2S + 2014 = 20276951

حل التمرين الثالث عشر:

تعيينُ الاقتراح الصنحيح الوحيد من بين الاقتراحات الثلاثة، في كلّ حالة، مع التّعليل:

 $u_2=1$ متتالية $\frac{2}{2}$ أساسها 3 وحدّها $u_2=1$ الحد العام للمتتالية u_n هو:

 $u_n = u_2 + (n-2)r$ الطريقة 201: $u_n = u_2 + (n-2)(3)$ = 1 + (n-2)(3) = 1 + 3n - 6 = -5 + 3n $\frac{|\dot{u}_n|}{|\dot{u}_n|}$ $\frac{|\dot{u}_n|}{|\dot{u}_n|}$ $\frac{|\dot{u}_n|}{|\dot{u}_n|}$ $\frac{|\dot{u}_n|}{|\dot{u}_n|}$

الطريقة 02:

 $u_n = 1 + 3n$ في حالة: • $u_2 = 1 + 3(2) = 7 \neq 1$ نجد:

 $u_n=7+3n$ في حالة: • $u_2=7+3(2)=13 \neq 1$ نجد:

 $u_{2} = 7 + 3(2) = 13 \neq 1$ في حالة: $u_{n} = -5 + 3n$

 $u_2 = -5 + 3(2) = 1$ <u>نجد:</u> (<u>نجد:</u> الاقتراح الصحيح هو الاقتراح جا $u_n = -5 + 3n$

 $n(2 + 2 + 3 + \cdots + n$ عدد طبيعي. المجموع n حد من متتالية حسابية حدّها الأول يساوي 1 وأساسها 1 لتكن هذه المتتالية (u_n)

 $u_n = n$ <u>نجد:</u> $u_1 = 1$ ومنه:

 $1 + 2 + 3 + \dots + n = u_1 + u_2 + u_3 + \dots + \overline{u_n}$ $= (n - 1 + 1) \left(\frac{u_1 + u_n}{2}\right)$ $= n \left(\frac{1 + n}{2}\right)$ $= \frac{n(n+1)}{2} = \frac{n^2 + n}{2}$

 $\frac{n^2+n}{2}$ (الاقتراح الصحيح هو الاقتراح أ

 $u_n=u_0 imes q^n$ عبارة الحد العام هي:

الأستاذ: بوعزة مصطفى $.u_2 = u_1 \times q = 6 \times 3 = 18$ u_n بدلاله u_n بدلاله u_n $u_n = 2 imes 3^n$ ومنه: $u_n = u_0 imes q^n$ $u_5 = 2 \times 3^5 = 2 \times 243 = 486$ يستنتاج $:(u_n)$ تعيين اتجاه تغيّر المتتالية (3 $u_{n+1}-u_n$ ندرس إشارة الفرق $u_n = 2 \times 3^n$ $u_{n+1} = 2 \times 3^{n+1} = 2 \times 3^n \times 3^1$ $u_{n+1} - u_n = (6 \times 3^n) - (2 \times 3^n)$ $= 4 \times 3^n > 0$ اِذن: (u_n) متزایدة تماما S_n المجموع S_n حيث، (4) $:S_n = u_0 + u_1 + u_2 + \cdots + u_{n-1}$ $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$ $= u_0 \left(\frac{1 - q^{(n-1) - 0 + 1}}{1 - a} \right)$ $=2\left(\frac{1-3^n}{1-3}\right)$ $=\frac{2}{3}(1-3^n)=-(1-3^n)=3^n-1$ $:2+6+18+\cdots+486$ $2 + 6 + 18 + \dots + 486 = u_0 + u_1 + u_2 + \dots + u_5$ $= 3^6 - 1 = 728$ حل التمرين السادس عشر: متتالية حسابية حدّها الأوّل u_1 وأساسها r حيث: $u_1 - u_3 = 5$ $u_2 = \frac{1}{2}$ $u_1 + u_3 = 1$ أ) تبيان أنّ أي تبيان أنّ (1 $.u_1 + u_3 = 2u_2 = 2\left(\frac{1}{2}\right) = 1$ $\underline{:}r=-rac{5}{2}$ ب تعيين الحدّ الأوّل u_1 ؛ ثمّ استنتاج أنّ $u_1 - u_3 = 5$ الجمع طرفاً لطرف نجد: $u_1 + u_3 = 1$ $(u_1 - u_3) + (u_1 + u_3) = 5 + 1$ $\left|u_{1}=\frac{6}{2}=3\right|$ ومنه: $2u_{1}=6$ وعليه: $r=-rac{5}{2}$ استنتاج أنّ $.r = u_2 - u_1 = \frac{1}{2} - 3 = \frac{1-6}{2} = -\frac{5}{2}$ <u>: سيدلالة يا بدلالة 2</u>

 $|u_n = 2 \times 5^n|$ بالتعويض نجد: v_n بدلالة v_n $u_n = 2 \times 5^n$ <u>دينا:</u> $u_n = v_n + 1$ <u>دينا:</u> $v_n = u_n - 1 = 2 \times 5^n - 1$ <u>اذن:</u> تحلّيل العدد 1250 إلى جداء عوامل أوليّة: 125 5 25 5 $|1250 = 2 \times 5^4|$ إذن: (u_n) استنتاج أنّ 1250 حد من حدود المتتالية $2 \times 5^n = 2 \times 5^4$ <u>نضع:</u> $u_n = 1250$ $n=4\in\mathbb{N}$ أي: $(u_4 = 1250)$ (u_n) حد من حدود المتتالية (u_n). S_n المجموع n أ-حساب بدلالة المجموع) $S_n = u_0 + u_1 + \cdots + u_{n-1}$ (ب) استنتج قيمة المجموع: $S_n = u_0 + u_1 + \cdots + u_{n-1}$ $= u_0 \left(\frac{1 - q^{(n-1) - 0 + 1}}{1 - q} \right)$ $=2\left(\frac{1-5^n}{1-5}\right)=\frac{2}{-4}(1-5^n)$ $|S_n = \frac{1}{2}(5^n - 1)|$ إذن: S_n' ب-حساب بدلالة n المجموع $S'_n = v_0 + v_1 + \dots + v_{n-1}$ $v_n = u_n - 1$ ومنه: $u_n = v_n + 1$ حسب خاصية الوسط الحسابي، $S_n' = v_0 + v_1 + \dots + v_{n-1}$ $= (u_0 - 1) + (u_1 - 1) + \cdots + (u_{n-1} - 1)$ = $(u_0 + u_1 + \dots + u_{n-1})$ - 1[(n-1) - 0 + 1] $=S_n-n$ $=\frac{1}{2}(5^n-1)-n$ $\left|S'_{n} = \frac{1}{2}(5^{n} - 1) - n\right|$ إذن: <u>حل التمرين الخامس عشر:</u> q متتالية هندسية حدّها الأوّل u_0 وأساسها (u_n) $u_0 = 3$ و $u_0 = 2$ u_2 <u>و ساب u_1 و 1</u>

 $u_{n+1} = u_n imes q$ بمأنّ (u_n) متتالية هندسية فإنّ

 $|u_1| = u_0 \times q = 2 \times 3 = 6$

 $\frac{1}{6}(1)((1)+1)(14-5(1))=\frac{2(9)}{6}=3$ الطرف الثاني: إذن: P(1) صحيحة.

المرحلة 02:

غرض صحة الخاصية P(n) أي: $T_n = \frac{1}{4}n(n+1)(14-5n)$ (فرضية التراجع)

ونبرهن صحة الخاصية P(n+1) أي: $T_{n+1} = \frac{1}{6}(n+1)(n+2)(9-5n)$

 $T_{n+1} = u_1 + 2u_2 + 3u_3 + \dots + (n+1)u_{n+1}$ $= \underbrace{u_1 + 2u_2 + 3u_3 + \dots + nu_n}_{1} + (n+1)u_{n+1}$ $= T_n + (n+1)u_{n+1}$ $=\frac{1}{6}n(n+1)(14-5n)+(n+1)u_{n+1}$ $= \frac{1}{6}n(n+1)(14-5n) + (n+1)\left(-\frac{5}{2}n+3\right)$ $= \frac{1}{6}(n+1)[n(14-5n)+(-15n+18]$ $=\frac{1}{6}(n+1)(-5n^2-n+18)$

حسب السؤال أ) نجد: $T_{n+1} = \frac{1}{6}(n+1)(n+2)(9-5n)$

P(n+1) صحيحة.

الخلاصة: حسب مبدأ الاستدلال بالتراجع لكل n من $T_n = \frac{1}{6}n(n+1)(14-5n) \cdot \mathbb{N}^*$

حل التمرين السابع عشر:

n متتالیة عددیة معرّفة من أجلّ عدد طبیعی (u_n) $.u_n = 3n - 2$:

<u>1)حساب ساء ، ساء ، ساء و 1</u>

$$u_0 = 3(0) - 2 = 0 - 2 = -2$$

 $u_1 = 3(1) - 2 = 3 - 2 = 1$
 $u_2 = 3(2) - 2 = 6 - 2 = 4$
 $u_3 = 3(3) - 2 = 9 - 2 = 7$

تبيان أنّ المتتالية (u_n) حسابية وتعيين أساسها: نبين أنّ الفرق $u_{n+1}-u_n$ عدد ثابت:

$$u_n = 3n - 2$$
 $u_{n+1} = 3(n+1) - 2$
 $u_{n+1} = 3n + 3 - 2 = 3n + 1$

$$u_{n+1} - u_n = (3n+1) - (3n-2)$$
 وعليه: $u_{n+1} - u_n = (3n+1) - (3n-2)$ $= 3n+1-3n+2=3$ $= 3n+1-3n+2=3$ $= 3n+1-3n+2=3$ $= 3n+1-3n+2=3$ $= 3n+1-3n+2=3$

 $u_n = u_1 + (n-1)r$ $u_n = 3 + (n-1)\left(-\frac{5}{2}\right)$ بالتعویض نجد: $u_n = -\frac{5}{2}n + 3 + \frac{5}{2}$ $|u_n = -\frac{5}{2}n + \frac{11}{2}|$ اِذَن:

S_n حيث، (3) حساب بدلالة n المجموع (3)

$$\frac{1}{2}S_n = u_1 + u_2 + \dots + u_n$$

$$S_n = u_1 + u_2 + \dots + u_n$$

$$= (n - 1 + 1) \left(\frac{u_1 + u_n}{2}\right)$$

$$= (n) \left(\frac{3 + \left(-\frac{5}{2}n + \frac{11}{2}\right)}{2}\right)$$

$$= \frac{n}{2} \left(3 - \frac{5}{2}n + \frac{11}{2}\right)$$

$$= \frac{n}{2} \left(-\frac{5}{2}n + \frac{17}{2}\right) = \frac{-5n^2 + 17n}{4}$$

ب) عيّن قيمة العدد الطبيعى \hat{n} الّتى يكونَ من أَجلها $S_n = -\frac{657}{2}$

$$\underline{:}S_n = -\frac{657}{2}$$

$$\frac{-5n^2+17n}{4}=-\frac{657}{2}$$
 معناه: $S_n=-\frac{657}{2}$ ومنه: $S_n=-\frac{657}{2}$

$$(*) - 10n^2 + 34n + 2628 = 0$$

نحل المعادلة (*):

 $\Delta = (34)^2 - 4(-10)(2628)$: $\Delta = (34)^2 - 4(-10)(2628)$ = 1156 + 105120 = 106276 > 0

للمعادلة (*) حلين متمايزين هما:

$$n' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-34 + \sqrt{106276}}{2(-10)} = \frac{-34 + 326}{-20} = \frac{29}{-2} = \frac{-146}{10} \notin \mathbb{N}$$

$$n'' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-34 - \sqrt{10627}}{2(-10)} = \frac{-34 - 326}{-20} = \frac{-360}{-20} = 18 \in \mathbb{N}$$

$$(S_{18} = -\frac{657}{2}) \boxed{n = 18}$$

عدد طبیعی غیر معدوم،
$$n(4)$$

$$.T_n = u_1 + 2u_2 + 3u_3 + \dots + nu_n$$

n التحقق أنه لكل n من n

ب) باستعمال الاستدلال بالتراجع، إثبات أنّه لكل n من

$$\underline{:}T_n = \frac{1}{6}n(n+1)(14-5n) \cdot \underline{\mathbb{N}}^*$$

P(n)نسمى هذه الخاصية

$$n = 1$$
المرحلة 01: من أجل $n = 1$

$$T_1 = 1u_1 = u_1 = 3$$
 الطرف الأول:

الأستاذ: بوعزة مصطفى $u_0 + u_1 + u_2 + u_3 = 10$ العلاقة $u_0 + (u_0 + 3) + (u_0 + 6) + (u_0 + 9) = 10$ $4u_0 + 18 = 10$ ومنه: $\overline{u_0 = \frac{-8}{4}} = -2$ ينيه: $4u_0 = -8$ ينزي $4u_0 = -8$ \underline{u}_n بدلالة u_n بدلالة \underline{u}_n $|u_n = -2 + 3n|$ ومنه: $u_n = u_0 + nr$ $u_n = 145$ تعيين العدد الطبيعي n بحيث، (3 -2 + 3n = 145 تُكافئ $u_n = 145$ 3n = 147 ومنه: ($u_{49} = 145$) $n = \frac{147}{3} = 49$ 4) حساب المجموع 2 بحيث، $\underline{:}S = u_0 + u_1 + \cdots + u_{49}$ $S = u_0 + u_1 + \dots + u_{49}$ $= (49 - 0 + 1) \left(\frac{u_0 + u_{49}}{2} \right)$ $= (50) \left(\frac{-2+145}{2} \right)$ $= (50) \left(\frac{143}{2}\right) = (50)(71,5) = 3575$ رة: العبارة: \mathbb{N} متتالية معرّفة على \mathbb{N} بالعبارة: $.v_n = 2u_n + 3$ حساب المجموع '5 بحيث، $:S' = v_0 + v_1 + \cdots + v_{49}$ $v_n = 2u_n + 3$ $S' = (2u_0 + 3) + (2u_1 + 3) + \dots + (2u_{49} + 3)$

 $= 2(u_0 + u_1 + \dots + u_{49}) + 3(94 - 0 + 1)$ = 2S + 3(50)= 2(3575) + 150 = 7300

حل التمرين التاسع عشر:

متتالية هندُسية حدودها موجبة تماما، معرّفة على (u_n) $u_3 = 320$ و $u_1 = 20$ حيث \mathbb{N}

تبيان أنّ أساس المتتالية (u_n) هو 4 وحدّها الأول (u_n)

 $u_n = u_p \times q^{n-p}$ الدينا: $u_3 = u_1 \times q^{3-1}$ ومنه: $320 = 20 \times q^2$ وعليه: $q^2 = \frac{320}{20} = 16$ ويكون: $q=\sqrt{16}=4$ وبالتالي: (مرفوض) $q = -\sqrt{16} = -4$

 $\underline{:}(u_n)$ دراسة اتجاه تغيّر المتتالية $\underline{:}(u_n)$ بمانّ (u_n) حسابية أساسها موجب تماماً فانها متزایدة تماما. (r = 3 > 0) (u_n) تبيان أنّ العدد 1954 حدّ من حدود المتتالية (4

وتعيين رتبته:

3n-2=1954 نضع: $u_n=1954$ ومنه: 3n = 1956 $(u_{652} = 1954)$ $n = \frac{1956}{3} = 652 \in \mathbb{N}$ ي عليه: (u_n) جدّ من حدود المتتالية المنتالية إذن:

 (u_0) هو رتبته: 653 (لأنّ الحد الأوّل هو

5)أ) حساب بدلالة n المجموع،

 $\underline{:}S_n = u_0 + u_1 + u_2 + \cdots + u_n$ $S_n = u_0 + u_1 + u_2 + \dots + u_n$ $= (n-0+1)\left(\frac{u_0+u_n}{2}\right)$ $= (n+1)\left(\frac{-2+(3n-2)}{2}\right)$ $= (n+1)\left(\frac{3n-4}{2}\right)$ $=\frac{(n+1)(3n-4)}{2}=\frac{3n^2-n-4}{2}$

 $S_n=328$ ب) تعيين العدد n بحيث يكون، $\frac{3n^2-n-4}{2} = 328$ <u>axio</u> $S_n = 328$

 $3n^2 - n - 4 = 2(328)$ ومنه: (*) $3n^2 - n - 660 = 0$

نحل المعادلة (*):

نحسب المميز ∆: $\Delta = (-1)^2 - 4(3)(-660)$ = 1 + 7920 = 7921 > 0

للمعادلة (*) حلين متمايزين هما:

 $n' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{7921}}{2(3)} = \frac{1 + 89}{6} = \frac{90}{6} = 15 \in \mathbb{N}$ $n'' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{7921}}{2(3)} = \frac{1 - 89}{6} = \frac{-88}{6} = \frac{-44}{3} \notin \mathbb{N}$.($S_{15} = 328$) n = 15

حل التمرين الثامن عشر: u_0 متتالية حسابية، أساسها 3 وحدّها الأول متالية $u_0 + u_1 + u_2 + u_3 = 10$ وتُحقِّق:

 u_0 حساب الحد الأوّل (1

 u_0 نكتب u_2 u_2 u_3 و u_2 بدلالة $u_n = u_0 + nr$ $(u_1 = u_0 + (1)r = u_0 + 3$ $\{u_2 = u_0 + (2)r = u_0 + 6\}$ ومنه: $u_3 = u_0 + (3)r = u_0 + 9$

 (u_n) ق) اثبات أنّ العدد 2017 حد من حدود المتتالية (u_n) مع تعيين رتبته: $u_n = 2017$ نضع: $u_n = 2017$ $u_n = 2017$ نضع: $u_n = 2017$ $u_n = 2022$ $u_n = 2017$ $u_n =$

n المجموع S حيث الطبيعي n المجموع S حيث $S = u_0 + u_1 + \cdots + u_n$

$$S = u_0 + u_1 + \dots + u_n$$

$$= (n - 0 + 1) \left(\frac{u_0 + u_n}{2}\right)$$

$$= (n + 1) \left(\frac{-5 + (-5 + 6n)}{2}\right)$$

$$= (n + 1) \left(\frac{-10 + 6}{2}\right)$$

$$= (n + 1)(-5 + 3n)$$

حل التمرين الحادي وعشرون:

 u_0 متتالیة حسابیة معرّفة علی $\mathbb N$ بحدها الأول (u_n) و أساسها r

 $u_3+u_5=20$ علما أنّ، u_4 علما الحد u_4 حسب خاصية الوسط الحسابي

 $\boxed{u_3 + u_5 = 2u_4}$ <u>الدينا:</u>

 $2u_4 = 20$ أصبح: $u_3 + u_5 = 20$

$$u_4 = \frac{20}{2} = 10$$
إذن:

 $egin{aligned} 2u_4 - u_5 &= 7 &= 2u_4 - u_5 \ 2u_4 - u_5 &= 7 \ &= 2u_4 - u_5 = 7 \end{aligned}$ ڪساب الحد $u_5 = 7$

 $-u_5 = 7 - 20$ ومنه: $-u_5 = 7 - 20$ وعليه: $-u_5 = -13$

 $u_5 = 13$ إذن:

 \underline{u}_0 وحساب عيمة r

بمان (u_n) متتالیة حسابیة،

 $u_5 = 13$ $u_4 = 10$ ولدينا:

 $r = u_5 - u_4 = 13 - 10 = 3$ إذن:

 $\underline{:}u_0$ حساب

 $u_4 = u_0 + 4r$ ومنه: $u_n = u_0 + nr$ الدينا: $u_0 = u_0 + 4r$

 $. u_0 = 10 - 12 = -2$ اذن:

4)التحقّق أنّ: من أجل كل عدد طبيعي n،

 $u_n = 3n - 2$

بن: q=4 $rac{d}{d}$ كُنّها حدود u_n موجبة تماما

يدلالة (u_n) بدلالة الحد العام للمتتالية عبارة الحد العام المتتالية عبارة الحد العام ا

 (u_n) هندسية معرفة على u_n معرفة الأوّل u_n هو $u_n = \frac{u_1}{a} = \frac{20}{4} = 5$

 $\underbrace{u_n=5 imes 4^n}$ بنا $\underbrace{u_n=u_0 imes q^n}$ بالتالي: $\underbrace{u_n=b\times q^n}$ بينتاج قيمة حدّها السابع:

 $u_6 = 5 \times 4^6 = 5(4096) = 20480$ الحد السابع هو :20480) مساب بدلالة العدد الطبيعى n المجموع S حيث،

 $\underline{:}S = u_0 + u_1 + \cdots + u_n$

 $S = u_0 + u_1 + \dots + u_n$ $= u_0 \left(\frac{1 - q^{n - 0 + 1}}{1 - q}\right)$ $= 5 \left(\frac{1 - 4^{n + 1}}{1 - 4}\right)$ $= \frac{5}{-3} (1 - 4^{n + 1}) = \frac{5}{3} (4^{n + 1} - 1)$ $= \frac{5}{3} (1 - 4^{n + 1}) = \frac{5}{3} (4^{n + 1} - 1)$ $= \frac{5}{3} (1 - 4^{n + 1}) = \frac{5}{3} (4^{n + 1} - 1)$

ب) استنتاج قيمة المجموع S' حيث، $S' = u_0 + u_1 + \dots + u_6$ حسب السؤ ال السابق أ) نجد

 $S' = u_0 + u_1 + \dots + u_6$ $= \frac{5}{3} (4^{6+1} - 1)$ $= \frac{5}{3} (4^7 - 1)$ $= \frac{5}{3} (16384 - 1)$ $= \frac{5}{3} (16383) = 27305$

حل التمرين العشرون:

المجموعة \mathbb{N} متتالية حسابية معرفة على المجموعة u_n بحدها الأوّل $u_0=-5$ و $u_0=-5$ الأوّل $u_0=-5$ المتتالية u_n):

 u_0 نكتب u_3 و u_7 بدلالة u_3

 $u_n = u_0 + nr$ <u>الدينا:</u> $u_3 = u_0 + (3)r = -5 + 3r$ $u_7 = u_0 + (7)r = -5 + 7r$ $u_3 + u_7 = 50$ بالتعويض في العلاقة $u_3 + u_7 = 50$ $u_3 + u_7 = 50$

 $r = \frac{60}{10} = 6$ ينزيز $r = \frac{60}{10} = 6$

 $rac{n}{2}$ تبیان أنّ: من أجل كل عدد طبیعی $u_n=6n-5$

 $[u_n = -5 + 6n]$ ومنه: $u_n = u_0 + nr$

 $\left(\frac{1-q^{-2}}{1-q}\right)$ الحد الأول = المجموع $=1\left(\frac{1-3^{100}}{1-3}\right)=\left(\frac{1-3^{100}}{-2}\right)=\frac{3^{100}-1}{2}$ c = 4x ، b = 6x - 3 ، a = 2x + 2 کدیناز $S_n = u_0 + u_1 + u_2 + \cdots + u_n$ الأعداد الحقيقية c ، b ، a بهذا الترتيب تُشكل حدودا $x=rac{4}{2}$ (أ) متتابعة لمتتالية حسابية عندما

بمأنّ الأعداد الحقيقية c ،b ،a بهذا الترتيب تُشكل حدودا متتابعة لمتتالية حسابية

a+c=2b فإنّ حسب خاصية الوسط الحسابي (2x+2)+(4x)=2(6x-3)6x + 2 = 12x - 6 $x = \frac{-8}{-6} = \frac{4}{3}$ وبالتالي: -6x = -8

المنتالية العددية (u_n) المعرّفة بـ: 4 ومن أجل (4 على عدد طبيعي $u_{n+1} = \frac{1}{2}u_n + 1$ ، كل عدد طبيعي $\Delta = (-1)^2 - 4(3)(-70)$

ج) لا حسابية ولا هندسية.

 $u_{n+1} = \frac{1}{2}u_n + 1$ لأنّ: العلاقة $u_{n+1} = u_n + r$ ليست من الشكل

حل التمرين الثالث وعشرون:

تعيين الاقتراح الصحيح، مع التبرير:

ب: \mathbb{N} متتالیة عددیة معرفة علی $(u_n)(1)$ $u_n = n^2 - 1$

المتتالية (u_n) : أ) متزايدة تماما، لمعرفة اتجاه تغيّر

 $u_{n+1}-u_n$ متتالية ندرس إشارة الفرق

 $u_n = n^2 - 1$ $u_{n+1} = (n+1)^2 - 1$ $= n^2 + 1^2 + 2(n)(1) - 1$

 $= n^2 + 2n$

 $u_{n+1} - u_n = (n^2 + 2n) - (n^2 - 1)$ =2n+1>0

انن: المتتالية (u_n) متزايدة تماما.

متتالية هندسية حدّها الأوّل $v_1=3$ وأساسها $(v_n)(2)$ q = 2

عبارة الحد العام للمتتالية (v_n) هي:

 $v_n = 3 \times 2^{n-1}$ (+

 $v_n = v_1 \times q^{n-1} = 3 \times 2^{n-1}$ کنّ:

:يساوي $S_n = v_1 + v_2 + \dots + v_n$ يُساوي

 $|u_n = -2 + 3n|$ ومنه: $u_n = u_0 + nr$ $S_n = {}_{i}S_n$ حساب بدلالة العدد الطبيعي n المجموع (5

 $\underline{:}u_0+u_1+\cdots+u_n$

 $= (n-0+1)\left(\frac{u_0+u_n}{2}\right)$ $=(n+1)\left(\frac{-2+(3n-2)}{2}\right)$ $= (n+1)\left(\frac{3n-4}{2}\right)$

 $=\frac{(n+1)(3n-4)}{2}=\frac{3n^2-n-4}{2}$

 $S_n = 33$ ايجاد العدد الطبيعى n حيث،

 $\frac{3n^2-n-4}{2} = 33$ معناه: $S_n = 33$

 $3n^2 - n - 4 = 2(33)$ ومنه:

(*) $3n^2 - n - 70 = 0$

نحل المعادلة (*):

نحسب المميز ∆: = 1 + 840 = 841 > 0

للمعادلة (*) حلين متمايزين هما:

 $n' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{841}}{2(3)} = \frac{1 + 29}{6} = \frac{30}{6} = 5 \in \mathbb{N}$

 $\underline{u_{n+1} = qu_n}$ وليست من الشكل $n'' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{841}}{2(3)} = \frac{1-29}{6} = \frac{-28}{6} = \frac{-14}{3} \notin \mathbb{N}$

.($S_5 = 33$) n = 5

حل التمرين الثاني وعشرون:

تعيينُ الاقتراح الصحيح مع التعليل: 1)الحد السّادس لمتتالية حسابية أساسها 3- وحدّها الأول 1 هو: ب) 14-.

الطريقة 01: إذا كان $u_0=1$ هو الحد الأوّل $u_0=1$

r=-3 للمتتالية الحسابية التي أساسها

فإنّ حدّها السادس هو u_5 وبالتالي:

 $u_5 = u_0 + 5r = 1 + 5(-3) = -14$

و الحد الأوّل $u_1 = 1$ هو الحد الأوّل $u_1 = 1$

 $\overline{|r=-3|}$ للمتتالية الحسابية التي أساسها

فإنّ حدّها السادس هو u_6 وبالتالي:

 $u_6 = u_1 + (6-1)r = 1 + \overline{5(-3)} = -14$

هو 1 وأساسها 3 هو: ج) ¹⁻³¹⁰.

 $(u_4 = 1536)$ ($u_4 = 1536$) ($u_4 = 1536$) ($u_4 = 1536$) ($u_5 = 1536$) ($u_6 = 1536$) ($u_6 = 1536$) ($u_7 = 1536$) ($u_$

n المجموع، n المجموع)

 $\frac{1}{2}S_n = u_1 + u_2 + \dots + u_n$ $S_n = u_1 + u_2 + \dots + u_n$ $= u_1 \left(\frac{1 - q^{n-1+1}}{1 - q}\right)$ $= 24 \left(\frac{1 - 4^n}{1 - 4}\right)$ $= \frac{24}{-3} (1 - 4^n)$ $= -8(1 - 4^n) = 8(4^n + 1)$

حل التمرين الخامس وعشرون:

 $u_n = \frac{2}{5}n - 1$ ب متتالیة عددیة معرّفة علی \mathbb{N}^* بـ (u_n)

 $\frac{2}{5}$ يُطلب (u_n) بيان أنّ المتتالية (u_n) حسابية أساسها (u_n) يُطلب حساب حدّها الأول u_1 :

 $rac{2}{5}$ ثبین أنّ الفرق $u_{n+1}-u_n$ عدد ثابت

 $u_n = \frac{2}{5}n - 1$ <u>دينا:</u>

 $u_{n+1} = \frac{2}{5}(n+1) - 1$ $= \frac{2}{5}n + \frac{2}{5} - 1$ $= \frac{2}{5}n + \frac{2-5}{5} = \frac{2}{5}n - \frac{3}{5}$

 $= \frac{1}{5}n + \frac{1}{5} = \frac{1}{5}n - \frac{1}{5}$ $u_{n+1} - u_n = \left(\frac{2}{5}n - \frac{3}{5}\right) - \left(\frac{2}{5}n - 1\right)$ $= \frac{2}{5}n - \frac{3}{5} - \frac{2}{5}n + 1$

 $= -\frac{3}{5} + 1 = \frac{-3+5}{5} = \frac{2}{5}$

الأول المتتالية (u_n) حسابية أساسها أ $\frac{2}{5}$ ، وحدّها الأول

 $.u_1 = \frac{2}{5}(1) - 1 = \frac{2}{5} - 1 = \frac{2-5}{5} = \frac{-3}{5}$

2)تعيين رتبة الحد الذي قيمته 575:

 $\frac{2}{5}n - 1 = 575$ <u>نجد:</u> $u_n = 575$ <u>نجد:</u> $\frac{2}{5}n = 576$ <u>ومنه:</u>

2n = 5(576) وعليه:

 $2n = 2880 = \frac{1}{2}$

 $(u_{1440}=575)$ $n=\frac{2880}{2}=1440\in\mathbb{N}$ يوبالتالي: $n=\frac{2880}{2}=1440$ لأنّ الحد إذن: رتبة الحد الذي قيمته 575 هي 1440 لأنّ الحد

 u_1 الاوّل هو

3)حساب قيمة المجموع 2 حيث،

 $\underline{:}S = u_1 + u_2 + \dots + u_{1440}$

 $S_n = v_1 + v_2 + \dots + v_n$ $= v_1 \left(\frac{1 - q^{n-1+1}}{1 - q}\right)$ $= 3\left(\frac{1 - 2^n}{1 - 2}\right) = 3\left(\frac{1 - 2^n}{-1}\right) = 3(2^n - 1)$

حل التمرين الرابع وعشرون:

متتالية هندُسية حدودها موجبة تماما، حدّها الأول (u_n) وأساسها q حيث:

 $.u_0 + u_1 = 30$ $u_0 \times u_2 = 576$

 $u_1 = 24$ تبيان أنّ $u_1 = 24$

حسب خاصية الوسط الهندسي

 $u_0 \times u_2 = 576$ ومنه: $u_0 \times u_2 = u_1^2$ الدينا $u_1^2 = 576$ غُصبح:

 $u_1 = \sqrt{576} = 24$ وعليه:

(مرفوض) $u_1 = -\sqrt{576} = -24$ أو

انن: $u_1 = 24$ المن حدود u_n) موجبة تماما.

 u_0 استنتاج قيمة

 $u_0 + u_1 = 30$ <u>لدينا:</u>

 $u_0 = 30 - u_1 = 30 - 24 = 6$ ومنه:

 $q = \frac{u_1}{u_0} = \frac{24}{6} = 4$ الدينا: q = 4

 \underline{n} كتابة عبارة الحد العام u_n بدلالة

 $u_n = 6 \times 4^n$ ومنه: $u_n = u_0 \times q^n$ ادينا:

3)اثبات أنّه من أجل كل عدد طبيعي n،

 $\underline{:}u_{n+1}-u_n=18\times 4^n$

 $u_n = 6 \times 4^n$ الدينا:

 $u_{n+1} = 6 \times 4^{n+1} = 6 \times 4^n \times 4^1$

 $u_{n+1} - u_n = (24 \times 4^n) - (6 \times 4^n)$ = 18×4^n

 $\underline{:}(u_n)$ استنتاج اتجاه تغيّر المتتالية

 $u_{n+1} - u_n = 18 \times \overline{4^n > 0}$ بمأنّ () بمائيّ () بمأنّ ()

فإنّ (u_n) متزایدة تماما

 $4^4 = 4 \times 4 \times 4 \times 4 = 256$: <u>44 حساب</u> (4) التحقّق أنّ العدد 1536 حد من حدود المتتالية (u_n)

وتعيين رتبته:

 $6 \times 4^n = 1536$ <u>نجد:</u> $u_n = 1536$ <u>نجد:</u>

 $4^n = \frac{1536}{6}$ ومنه:

 $4^n = 256$ أي:

<u>وعليه:</u> 4¹ 4 4 <u>لأنّ</u> 256 (4⁴

 u_1 علماً أنّ: $u_1 + u_2 + u_1 + u_2 = 6$ ، تعيين $u_1 + u_2 + \dots + u_{1440}$ $u_0 + \overline{u_2 = 2u_1}$ حسب خاصية الوسط الحسابي الدينا $u_0 + u_1 + u_2 = 6$ العلاقة $3u_1 = 6$ يمنه: $u_1 + 2u_1 = 6$ $|u_1 = \frac{6}{3} = 2|$ إذن: $2u_0 - 3u_1 = -10$ علماً أنّ: $2u_0 - 3u_1 = -10$ $\underline{\cdot}(u_n)$ ثم استنتاج قيمة r أساس المتتالية u_0 $2u_0 - 3(2) = -10$ ثُكافئ $2u_0 - 3u_1 = -10$ $2u_0 = -10 + 6$ $2u_0 = -4$: $u_0 = \frac{-4}{2} = -2$ إذن: $\underline{\cdot}(u_n)$ استنتاج قيمة r أساس المتتالية $|r = u_1 - u_0 = 2 - (-2) = 4|$ فيانّ u_n بدلالة عبارة الحد العام u_n بدلالة $|u_n = -2 + 4n|$ ومنه: $u_n = u_0 + nr$ $u_n=2018$ تعيين قيمة n حتى يكون (4) -2 + 4n = 2018 نضع: $u_n = 2018$ 4n = 2020 ومنه: $(u_{505}=2018)$ $n=\frac{2020}{4}=505\in\mathbb{N}$ وبالتالي: $\underline{:}(u_n)$ عشر للمتتالية $\underline{:}(u_n)$ بمأنّ الحد الأوّل هو u_0 فيانّ الحد الخامس عشر هو: $|u_{14} = -2 + 4(14) = 54|$ 5)حساب بدلالة n المجموع S_n حيث، $:S_n = u_0 + u_1 + u_2 + \cdots + u_n$ $S_n = u_0 + u_1 + u_2 + \dots + u_n$ $=(n-0+1)\left(\frac{u_0+u_n}{2}\right)$ $= (n+1)\left(\frac{-2+(-2+4n)}{2}\right)$ $=(n+1)\left(\frac{-4+4n}{2}\right)=(n+1)(2n-2)$ $S_n = 96$ تعيين العدد الطبيعي n حتى يكون، (6 (n+1)(2n-2) = 96 <u>asilot</u> $S_n = 96$ $2n^2 - 2n + 2n - 2 = 96$ ومنه: وعليه: 2n² = 98 أي: 249 وعليه: $n = \sqrt{49} = 7$ وبالتالى: $n = \sqrt{49}$ (مرفوض) $n = -\sqrt{49} = -7$.($S_7 = 96$) n = 722

جانفي 2020 $= (1440 - 1 + 1) \left(\frac{u_1 + u_{1440}}{2} \right)$ $= (1440) \left(\frac{\frac{-3}{5} + 575}{2} \right)$ $=\frac{1440}{2}\left(\frac{-3}{5}+575\right)$ $=720\left(\frac{-3+5(575)}{5}\right)$ $=720\left(\frac{-3+2875}{5}\right)$ $=720\left(\frac{2872}{5}\right)$ = 720(574.4) = 413568المتتالية المعرّفة على \mathbb{N}^* كما يلى: $(v_n)(4)$ $.v_n = 4^{5u_n+6}$ $u_0=-2$ ، $u_1=2$ مندسية يُطلب تعيين أساسها $\overline{(u_n)}$ حسابية؛ ولدينا $\overline{(v_n)}$ مندسية يُطلب تعيين أساسها $\overline{(v_n)}$ v_1 وحدّها الأول v_1 نُبين أنّ حاصل القسمة $\frac{v_{n+1}}{n}$ عدد ثابت $v_{n+1} = 4^{5u_{n+1}+6}$ ومنه: $v_n = 4^{5u_{n}+6}$ $u_{n+1}=u_n+r$ وبمانی (u_n) حسابیة فیان (u_n) وبمان $u_{n+1} = u_n + \frac{2}{5}$ اي: $v_{n+1} = 4^{5u_{n+1}+6}$ وعليه: $=4^{5\left(u_n+\frac{2}{5}\right)+6}$ $=4^{5u_n+2+6}$ $=4^{(5u_n+6)+2}=4^{5u_n+6}\times 4^2$ $\frac{v_{n+1}}{v} = \frac{4^{5u_n+6} \times 4^2}{4^{5u_n+6}} = 4^2 = 16$ وبالتالي: ادن: (v_n) متتالیة هندسیة أساسها q=16، وحدّها $v_1 = 4^{5u_1+6} = 4^{5\left(\frac{-3}{5}\right)+6} = 4^{-3+6} = 4^3 = 64$ الأول لأنّها معرّفة على *№. ب) حساب بدلالة n المجموع، $\underline{:}S_n = v_1 + v_2 + \dots + v_n$ $S_n = v_1 + v_2 + \dots + v_n$

 $= v_1 \left(\frac{1 - q^{n-1+1}}{1 - q} \right)$ $=64\left(\frac{1-16^n}{1-16}\right)$ $= \frac{64}{-15}(1 - 16^n) = \frac{64}{15}(16^n - 1)$

حل التمرين السادس وعشرون:

المتتالية الحسابية التي حدّها الأول u_0 وأساسها (u_n)

أستاذ المادة: ب- م

السلسة الثانية (التمارين) –

انتهى بالتوفيق في البكالوريا

سلاسل العبقري في الرياضيات

الشعبة: آداب وفلسفة، لغات أجنبية

يتبع السلسلة الثانية. المحور: المتتاليات العددىة

التحضير الجيد لبكالورما: 2020

 $\overline{u_n}$ احسب الحد u_{20} ثم اكتب عبارة الحد العام n بدلالة n

 $S = u_1 + u_2 + \dots + u_{20}$ احسب المجموع)(3

التمرين 05:()— بكالوريا 1999.

متتالية حسابية حدّها الأول $u_0=1$ وأساسها $(u_n)(1)$

n بدلالة u_n بدلالة عبارة الحد العام عبارة الحد العام عبارة الحد العام u_n

 $S = u_0 + u_1 + \dots + u_n$:ب-احسب المجموع

 $v_8 = 256$ وَ $v_5 = 32$ وَ هندسية هندسية $(v_n)(2$ أ-عيّن أساس المتتالية وحدّها الأول v_0 ثم اكتب

n عبارة الحد العام v_n بدلالة

 $S' = v_0 + v_1 + \dots + v_n$: ب-احسب المجموع:

نعتبر (w_n) المتتالية المعرّفة على $\mathbb N$ بـ:

 $.w_n = 2^n + 2n + 1$

 $S'' = w_0 + w_1 + \dots + w_n$ احسب المجموع:

التمرين 06:() -- بكالوريا 2000.

متتالية هندسية أساسها $\frac{2}{3}$ ومجموع حدودها (v_n)

الثلاثة الأولى v_0 ، v_1 ، v_0 يساوي 19.

 v_2 ، v_1 ، v_0 احسب الحدود (1

n بدلالة v_n بدلالة عبارة الحد العام عبارة

n المجموع:

 $S_n = v_0 + v_1 + \dots + v_{n-1}$ (يُعطى الكسر مُختزل). (يُعطى الكسر مُختزل).

التمرين 07:()— بكالوريا 2001.

 u_1 متتالية حسابية حدّها الأول متتالية متالية متتالية متالية مت

 $\begin{cases} u_1 + u_2 + u_3 = \frac{3}{2} \\ u_1 + 4u_2 - u_3 = 7 \end{cases}$

بكالوريات من النامام القديم

<u>التمرين 01:()</u>—بكالوريا 1995.

:معرّفة على $\mathbb N$ حيث معرّفة على متتالية حسابية معرّفة

 $u_4 = 12$ $u_2 = 7$

1)عيّن أساس هذه المتتالية وحدّها الأول.

 $u_n=22$ يّن العدد الطبيعي n علماً أنّ(2)

3)أحسب المجموع

 $.S = u_1 + u_2 + u_3 + \dots + u_6$

التمرين 02:()— بكالوريا 1996.

نعتبر المتتالية الحسابية (u_n) التي حدّها الأول

 $u_1=4$ وأساسها 2.

 u_3 اُحسب u_2 وَ (1

n بدلالة u_n بدلالة u_n بدلالة u_n

 u_{1996} عيّن قيمة الحد (3

4) هل 1416 حد من حدود هذه المتتالية؟

<u>التمرين 03:()</u> بكالوريا 1997.

ديث: متتالية حسابية أساسها 3 حيث: (u_n)

 $u_3^2 + u_5^2 + u_7^2 = 579$

علماً أنّ حدود هذه المتتالية موجبّة

 u_7 احسب u_5 ثم u_3 ، u_5 احسب)(1

اكتب u_n بدلالة u_n ثم عيّن العدد الطبيعي u_n بحيث:

 $.u_k=1996$

التمرين 04:()— بكالوريا 1998.

متتالیة حسابیة معرّفة علی \mathbb{N} حیث:

 $.u_3 = 24$ $u_1 = 4$

1)عين أساس هذه المتتالية.

التمرين 11:()— بكالوريا 2005.

دیث: متتالیة حسابیة حیث: (u_n)

 $.u_2 + u_5 = 34$ $u_0 + u_3 = 18$

احسب الحد الأول u_0 والأساس r لهذه المتتالية.

n اكتب الحد العام u_n بدلالة (2

 $S_n = u_0 + u_1 + \dots + u_n$ احسب المجموع)(3

 $S_n = 78$ أوجد قيمة العدد الطبيعي n بحيث:4

التمرين 12:()— بكالوريا 2006.

المتتالية الهندسية ذات الحدود الموجبة التي حدّها (v_n)

 $v_4 = 8$ وحدّها الخامس $v_0 = \frac{1}{2}$ الأول

n بدلالة v_n بدلالة أمّ اكتب بدلالة v_n بدلالة المتتالية أمّ بدلالة v_n

 (v_n) أنّ العدد 2048 حد في المتتالية (v_n).

n المجموع:

 $.S_n = v_1 + v_2 + \dots + v_n$

4) احسب المجموع:

 $.S = 1 + 2 + 4 + 8 + \dots + 2048$

المحور: المتاليات العددية

عيّن الحدود u_1 ، u_2 ، u_3 وأساسها.

n بدلالة u_n بدلالة عبارة الحد العام عبارة الحد العام u_n

 $S_n = u_1 + u_2 + \dots + u_n$ احسب المجموع)(3

 $S_n = -10$:عيّن قيمة العدد الطبيعي n بحيث(4)

<u>التمرين 08:()</u>— بكالوريا 2002.

 u_1 متتالية حسابية حدّها الأول u_n

 $.u_1+u_3=1$ كاً الثاني u_2 علماً أنّ $u_1+u_3=1$

احسب حدّها الرابع u_4 علماً أنّ: u_4

 $.u_3 + u_4 + u_5 = 30$

 u_1 عيّن أساس هذه المتتالية وحدها الأول u_1

اكتب عبارة الحد العام u_n بدلالة n ثم عيّن قيمة (4

 $u_n=32$:العدد الطبيعي n بحيث

 $S = u_1 + u_2 + \dots + u_{15}$ احسب المجموع)(5

التمرين 09:()— بكالوريا 2003.

متتالية حسابية معرّفة على مجموعة الأعداد (u_n)

 $u_n = \frac{2}{5}n + \frac{5}{4}$ الطبيعية غير المعدومة \mathbb{N}^* ب

بيّن أنّ (u_n) متتالية حسابية يُطلب تعيين حدّها (1

الأول u_1 وأساسها r، استنتج اتجاه تغيّرها.

 $S_n = u_1 + u_2 + \dots + u_n$:احسب المجموع)

 $S_n=10$:عيّن العدد الطبيعي n بحيث (3

التمرين 10:() — بكالوريا 2004.

متتالية حسابية معرّفة على بحدّها الأول (u_n)

 $u_2 + u_5 = 25$: وبالعلاقة $u_0 = 2$

 (u_n) عيّن أساس المتتالية (u_n) .

n بدلالة u_n اكتب الحد العام الحد العام (2

3)احسب قيمة الحد الذي رتبته 11.

 $S = u_0 + u_1 + \dots + u_{10}$ احسب المجموع)(4

انتهى بالتوفيق في البكالوريا

أستاذ المادة: ب- م/يتبع الملخص الأوّل حول المتتاليات العددية. ملخصات العبقري في الرياضيات

الشعبة: آداب وفلسفة، لغات أجنبية

-الملخص الأوّل--

التحضير الجيد لبكالورما: 2020

أستاذ المادة: ب-م

انتهى بالتوفيق في البكالوريا

المحور: المتتاليات العددية

الملخص الأوّل- (u_n) المتتالية

ملخصات العبقري في الرماضيات

 $\times q \times q$ $\times q \times q$

 u_0 $u_2 \dots u_{n-1} u_n u_{n+1}$

حيث q عدد حقيقي $u_{n+1} = qu_n$ u_n يسمى أساس المتتالية الهندسية q

 u_n بدلالة u_{n+1} نكتب

 $u_{n+1} = qu_n$

 u_0 إذا أعطى

 $u_n = u_0 \times q^n$

 u_1 إذا أعطى

 $u_n = \overline{u_1} \times q^{n-1}$

من أجل عدين طبيعيين n وp.

 $u_n = \overline{u_p \times q^{n-p}}$

علاقة تربط بين حدين مختلفين في متتالية

هندسنة

+r +r $u_2 \dots u_{n-1} u_n u_{n+1}$

حيث r عدد حقيقي $u_{n+1} = u_n + r$ (u_n) يسمى أساس المتتالية الحسابية r

الطريقت 01:

نبين أنّ الفرق $u_{n+1}-u_n$ عدد ثابت (الأساس)

الطريقت 02:

 u_n بدلالة u_{n+1} نكتب u_{n+1} $|u_{n+1}=u_n+r|$

أبين أنّ الحاصل $\frac{u_{n+1}}{u_{n+1}}$ عدد ثابت (الأساس) كيف نبين الطريقت 02:

عبارة الحد العام

 (u_n)

للمتتاليت

n كتابة u_n بدلالة

هذه العلاقات بُمكن استعمالها وذلك بتعويض u_n بأي حد

مجموع حدود متتابعة من متتاليت

 u_0 إذا أعطي

 $u_n = u_0 + nr$

 u_1 إذا أعطى

 $u_n = u_1 + (n-1)r$

من أجل عدرين طبيعيين n وp. $|u_n = u_p + (n - p)r$

علاقة تربط بين حدين مختلفين في متتالية حسابية

بصفت عامت:

الحد الأخير + الحد الأول) (عدد الحدود) = المجموع

بصفت عامت:

الطريقت 01:

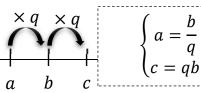
عدد الحدود $\left(\frac{1-q}{1-q}
ight)$ الحد الأول = المجموع

1 + دليل الحد الأوّل - دليل الحد الأخير = عدد الحدود

الوسط الهندسي: خاصيت الوسط

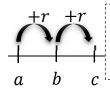
تكون a و b ثلاث حدود متتابعة من متتالية هندسية إذا وفقط إذا كان

 $a \times c = b^2$



الوسط الحسابي: تكون a و b ثلاث حدود متتابعة من

متتالية حسابية إذا وفقط إذا كان



a = b - rc = b + r