

طريقك نحو البكالوريا

الشعب:

علوم تجريبية | رياضيات | تقني رياضي | تسيير وإقتصاد

دراسة دالة لوغارتمية

إعداد الأستاذ:

قويسم إبراهيم الخليل

آخر تحدیث:

x	-∞	***	• 1	 -	1	$\sqrt{3}$	
f'(x)		0	_			0	+
f(x)		$-\sqrt{3} - \ln(2 +$	√3)				+∞

 $\cdot (o; ec{t}, ec{f})$ ونسمي (C_f) تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس

علما أن الدالة f فردية:

. f مع التبرير ، ثم استنتج اتجاه تغير الدالة f'(x) مع التبرير

$$f(\sqrt{3}) = \sqrt{3} + \ln(2 + \sqrt{3})$$
 وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = +\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ بـ/ بيّن أنّ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ وَ $\lim_{\substack{x \to -\infty \\ x \to 1}} [f(x)] = -\infty$ والمال أن المال أن الما

- . $\pm\infty$ عند (C_f) عند y=x مقارب مائل لـ y=x مقارب (2) نقبل أن المستقيم $f(\sqrt{3})\cong 3$. ناخذ: (C_f) عند $(\sqrt{3})\cong 1.7$ و $(\sqrt{3})\cong 1.7$ و أ/ مثّل بيانيا كل من المستقيم (D) والمنحني (C_f) . ناخذ: (C_f)
 - نفرض أن عبارة الدالة f هي من الشكل: (3

$$f(x) = ax + b + \ln\left(c + \frac{2}{x - 1}\right)$$

حيث: c, b, a أعداد حقيقية.

$$c=1$$
 و $b=0$ ، $a=1$ و $b=0$. $a=1$. و $b=0$. $a=1$

ناقش بيانيا حسب قيم الوسيط الحقيقى m عدد واشارة حلول المعادلة (E) ذات المجهول x التالية: (4)

$$x - \frac{e^m + e^x}{e^m - e^x} = 0 \dots (E)$$

نعتبر الدالة g المعرفة على]1; $+\infty$ [كما يلي:

$$g(x) = \ln(f(x))$$

g ادرس تغيرات الدالة g .

(I)

اً أرتعيين إشارة f'(x) مع التبرير: (1

نضع γ, β, α حیث:

х	$-\infty$	α	l.	3	1	L	$\sqrt{3}$	γ
f'(x)		0	_				0	+

لدينا الدالة f فردية ، معناه:

$$\begin{cases} (-x) \in D_f \\ f(-x) = -f(x) \end{cases}$$

ومنه:

$$-f'(-x) = -f'(x) \Rightarrow f'(-x) = f'(x)$$

لدينا من جدول التغيرات (المُعطى):

$$x \in]\alpha; \beta[$$
 لما $f'(x) < 0$

$$-x \in]\alpha; \beta[$$
 $\alpha; \beta[$ $\alpha; \beta[$ $\alpha; \beta[$

$$x \in]-\beta;-\alpha[$$
 لما $f'(x) < 0$ \Leftarrow

ولدينا كذلك:

$$x \in]\sqrt{3}$$
; γ [لما $f'(x) > 0$

$$-x \in]\sqrt{3}; \gamma[$$
 $\downarrow \omega$ $\underbrace{f'(-x)}_{=f'(x)} > 0 \leftarrow$

$$x \in]-\gamma; -\sqrt{3}[$$
 لما $f'(x) > 0 \leftarrow$

$$x=-\sqrt{3}$$
 ومنه $-x=\sqrt{3}$ لما $f'(-x)=0$ معناه $x=\sqrt{3}$ لما ولدينا:

$$\gamma=+\infty$$
 ومنه: $eta=-1$ و $lpha=-\sqrt{3}$

و ــ رو . اذن:

$$x \in]-\infty; -\sqrt{3}[\cup]\sqrt{3}; +\infty[$$
 الما:
$$f'(x) > 0$$

$$x \in \left] -\sqrt{3}; -1\right[\cup \left] 1; \sqrt{3}\right[$$
 لما: $f'(x) < 0$

$$\lim_{x \to -\infty} [f(x)] = -\infty$$
 برا تبیین أن

$$\lim_{x\to +\infty} [f(x)] = +\infty$$
 لدينا من الجدول السابق:

$$(f(-t)=-f(t):$$
نضع $x=-t$ (الدالة f فردية أي:

ومنه:

$$\lim_{x \to -\infty} [f(x)] = \lim_{-t \to -\infty} [f(-t)]$$

$$= \lim_{t \to +\infty} [f(-t)]$$

$$= \lim_{t \to +\infty} [-f(t)]$$

$$= -\lim_{t \to +\infty} [f(t)]$$

$$\lim_{x \to +\infty} [f(x)] = +\infty$$

$$= -(+\infty)$$

$$= -\infty$$

$$\lim_{\substack{x > x \to 1}} [f(x)] = +\infty$$
 - تبيين أن: - -

$$\lim_{x \to 1} [f(x)] = +\infty$$

بنفس الفكرة السابقة (نضع x=-t نجد:

$$f(\sqrt{3}) = \sqrt{3} + \ln(2 + \sqrt{3})$$
: تبيين أن:

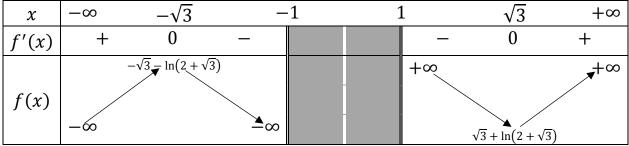
لدينا:

$$\underbrace{f(-\sqrt{3})}_{f(-\sqrt{3})=-f(\sqrt{3})} = -\sqrt{3} - \ln(2 + \sqrt{3})$$

$$\Rightarrow -f(\sqrt{3}) = -\sqrt{3} - \ln(2 + \sqrt{3})$$

$$\Rightarrow f(\sqrt{3}) = \sqrt{3} + \ln(2 + \sqrt{3})$$

ج/ اكمال جدول تغيرات الدالة f السابق:



2) التمثيل البياني:

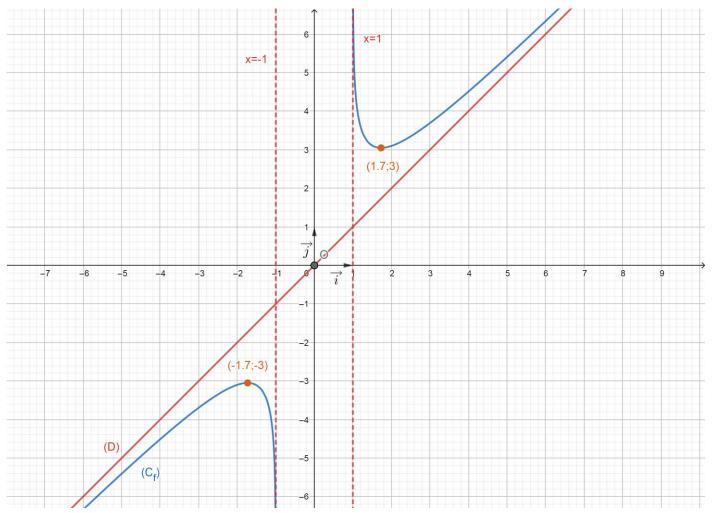
قبل أن نشرع في التمثيل البياني، نستخرج من جدول التغيرات المستقيمات المقاربة لدينا:

- x=-1 يقبل مستقيم مقارب عمودي بجوار $-\infty$ معادلته (\mathcal{C}_f) .
 - x=1 يقبل مستقيم مقارب عمودي بجوار $+\infty$ معادلته (\mathcal{C}_f) .

خطوات التمثيل على معلم متعامد ومتجانس:

- x=-1 و x=1 نرسم المستقيمات المقاربة: x=-1
 - نرسم المقارب المائل (D)
 - نعين النِقط الحدية

$ig(\mathcal{C}_f ig)$ نرسم f نرسم غیرات الداله f



: c=1و b=0 ، a=1 و (3

لدينا:

$$f'(x) = a + \frac{-\frac{2}{(x-1)^2}}{c + \frac{2}{x-1}}$$

$$= a - \frac{\frac{2}{(x-1)^2}}{\frac{c(x-1)+2}{x-1}}$$

$$= a - \frac{\frac{2}{x-1}}{c(x-1)+2}$$

$$= a - \frac{2}{c(x-1)^2 + 2(x-1)}$$

ولدينا:

$$\begin{cases} f'(\sqrt{3}) = 0 \\ f'(-\sqrt{3}) = 0 \end{cases} \Rightarrow \begin{cases} a - \frac{2}{c(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \\ a - \frac{2}{c(-\sqrt{3} - 1)^2 + 2(-\sqrt{3} - 1)} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a - \frac{2}{c(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \\ a - \frac{2}{c(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \dots (*) \end{cases}$$

$$\Rightarrow \begin{cases} a - \frac{2}{c(\sqrt{3} - 1)^2 + 2(\sqrt{3} - 1)} = 0 \dots (*) \\ a - \frac{2}{c(\sqrt{3} + 1)^2 - 2(\sqrt{3} + 1)} = 0 \dots (**) \end{cases}$$

بطرم (*) من (**) نجد:

$$-\frac{2}{c(\sqrt{3}-1)^{2}+2(\sqrt{3}-1)} + \frac{2}{c(\sqrt{3}+1)^{2}-2(\sqrt{3}+1)} = 0$$

$$\Rightarrow c(\sqrt{3}+1)^{2}-2(\sqrt{3}+1) = c(\sqrt{3}-1)^{2}+2(\sqrt{3}-1)$$

$$\Rightarrow c(4+2\sqrt{3})-2\sqrt{3}-2 = c(4-2\sqrt{3})+2\sqrt{3}-2$$

$$\Rightarrow c(4+2\sqrt{3})-c(4-2\sqrt{3})-4\sqrt{3} = 0$$

$$\Rightarrow c(4\sqrt{3}) = 4\sqrt{3}$$

$$\Rightarrow c = 1$$

(*) نجد: نعوض قیمة c نجد

$$a - \frac{2}{\left(\sqrt{3} - 1\right)^2 + 2\left(\sqrt{3} - 1\right)} = 0 \Rightarrow a = \frac{2}{\left(\sqrt{3} - 1\right)^2 + 2\left(\sqrt{3} - 1\right)}$$
$$\Rightarrow \frac{2}{4 - 2\sqrt{3} + 2\sqrt{3} - 2}$$
$$\Rightarrow a = \frac{2}{4 - 2}$$
$$\Rightarrow a = 1$$

ولدينا:

$$f(\sqrt{3}) = \sqrt{3} + \ln(2 + \sqrt{3}) \Rightarrow \sqrt{3} + b + \ln(1 + \frac{2}{\sqrt{3} - 1}) = \sqrt{3} + \ln(2 + \sqrt{3})$$

$$\Rightarrow b + \ln\left(1 + \frac{2}{\sqrt{3} - 1}\right) = \ln(2 + \sqrt{3})$$

$$\Rightarrow b = \ln(2 + \sqrt{3}) - \ln\left(1 + \frac{2}{\sqrt{3} - 1}\right)$$

$$\Rightarrow b = \ln\left(\frac{2 + \sqrt{3}}{1 + \frac{2}{\sqrt{3} - 1}}\right)$$

$$\Rightarrow b = \ln\left(\frac{2 + \sqrt{3}}{\frac{\sqrt{3} + 1}{\sqrt{3} - 1}}\right)$$

$$\Rightarrow b = \ln\left(\frac{(2 + \sqrt{3})(\sqrt{3} - 1)}{\sqrt{3} + 1}\right)$$

$$\Rightarrow b = \ln\left(\frac{2\sqrt{3} - 2 + 3 - \sqrt{3}}{\sqrt{3} + 1}\right)$$

$$\Rightarrow b = \ln\left(\frac{\sqrt{3} + 1}{\sqrt{3} + 1}\right)$$

$$\Rightarrow b = \ln(1)$$

$$\Rightarrow b = \ln(1)$$

4) المناقشة البيانية:

لدينا:

$$x - \frac{e^m + e^x}{e^m - e^x} = 0 \Rightarrow \frac{xe^m - xe^x - e^m - e^x}{e^m - e^x} = 0$$

$$\Rightarrow xe^m - xe^x - e^m - e^x = 0$$

$$\Rightarrow e^m(x - 1) - e^x(x + 1) = 0$$

$$\Rightarrow e^m(x - 1) = e^x(x + 1)$$

$$\Rightarrow e^m = e^x \left(\frac{x + 1}{x - 1}\right)$$

$$\Rightarrow m = \ln\left[e^x \times \left(\frac{x + 1}{x - 1}\right)\right]$$

$$\Rightarrow m = \ln(e^x) + \ln\left(\frac{x + 1}{x - 1}\right)$$

$$\Rightarrow m = x + \ln\left(\frac{x + 1 + 1 - 1}{x - 1}\right)$$

$$\Rightarrow m = x + \ln\left(1 + \frac{2}{x - 1}\right)$$
$$\Rightarrow f(x) = m$$

 $y_m=m$ مع المعادلة (E) هي فواصل نقط تقاطع المنحني المنحني عبد المعادلة ومنه حلول المعادلة واصل نقط المنطع المنحني

لما
$$m \in \left] -\infty; f\left(-\sqrt{3}\right) \right]$$
 ليعادلة حلان سالبان $m < f\left(-\sqrt{3}\right)$

$$x=-\sqrt{3}$$
 لما $m=f(-\sqrt{3})$ لما $m=f(-\sqrt{3})$

لما
$$m \in \left] f\left(-\sqrt{3}\right); f\left(\sqrt{3}\right) \right[$$
 المعادلة لا تقبل حلول $f\left(-\sqrt{3}\right) < m < f\left(\sqrt{3}\right)$ لما

$$x=\sqrt{3}$$
 ما $m=f(\sqrt{3})$ للمعادلة حل مضاعف هو

لما
$$m \in \left] f(\sqrt{3}); +\infty \right[$$
 المعادلة حلان موجبان $m > f(\sqrt{3})$

دراسة تغيرات الدالة g: **(II)**

$$g(x) = \ln(f(x))$$
 لدينا:

$$k(x) = \ln x$$
 حيث: $g(x) = k \circ f = k(f(x))$: نلاحظ أن

$$\lim_{x \to +\infty} [k(x)] = +\infty$$
 و $\lim_{\substack{x \to +\infty \\ x \to 1}} [f(x)] = +\infty$

اذن:

ومنه:

$$\lim_{\substack{x \to +\infty}} [g(x)] = +\infty$$
 ولدينا: $\lim_{x \to +\infty} [k(x)] = +\infty$ و $\lim_{x \to +\infty} [g(x)] = +\infty$ $\lim_{x \to +\infty} [g(x)] = +\infty$

:g'(x) دراسة -

$$g'(x) = \frac{f'(x)}{f(x)}$$

f'(x) لما g'(x) من إشارة $x \in]1; +\infty[$ لما f(x) > 0

 $\cdot g$ جدول تغيرات الدالة -

x	1	$\sqrt{3}$	+∞			
g'(x)	_	0	+			
$\frac{g'(x)}{g(x)}$	+∞		≠ +∞			
	$g(\sqrt{3})$					

◄ بالتوفيق في شهادة البكالوريا ◄