

طريقك نحو البكالوريا

الشعب:

علوم تجريبية | رياضيات | تقني رياضي | تسيير وإقتصاد

## تمرين مع الحل في المتتاليات العددية



إعداد الأستاذ:

قويسم إبراهيم الخليل

آخر تحدیث:

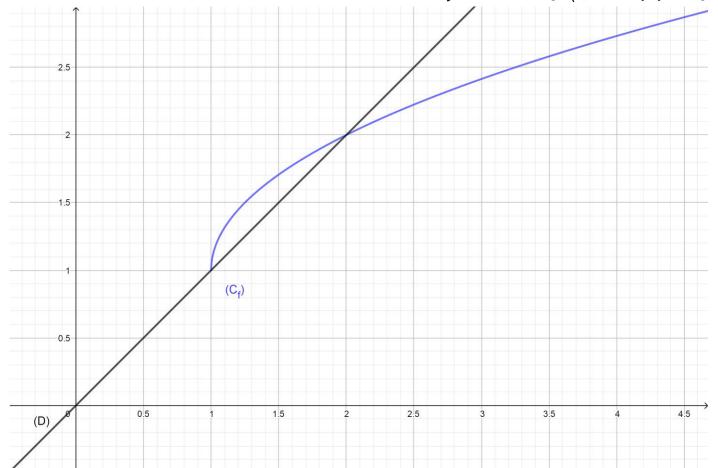
2021 / 01 / 31

 $[1; +\infty]$  نعتبر الدالة f المعرفة على المجال

$$f(x) = 1 + \sqrt{x - 1}$$

.  $(o; \vec{\imath}, \vec{j})$  سنجامد المتعامد المتعامد ونسمي ونسمي ( $\mathcal{C}_f$ ) تمثيلها البياني في مستوِ منسوب إلى المعلم المتعامد المتجانس

. y = x وليكن (D) المستقيم ذو المعادلة



ونعتبر  $(u_n)$  المتتالية العددية المعرفة كما يلي:

$$\begin{cases} u_0 = \frac{5}{4} \\ u_{n+1} = f(u_n) \end{cases}$$

- 0
- $u_3$  و  $u_2$  ، $u_1$  ، $u_0$  والمستقيم  $u_2$  ، مثل على محور الفواصل الحدود  $u_1$  ، $u_2$  و و  $u_3$  و مبرزا خطوط التمثيل.
  - ضع تخمينا حول اتجاه تغير المتتالية  $(u_n)$  وتقاربها. 2
- 2
- $1 < u_n < 2: n$  برهن بالتراجع أنه من أجل كل عدد طبيعي  $1 < u_n < 1$ 
  - .  $\mathbb N$  اثبت ان المتتالية  $(u_n)$  متزايدة تماما على  $(u_n)$

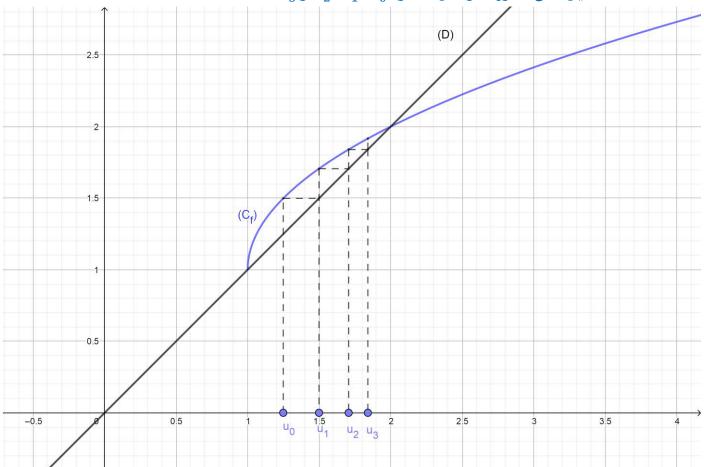
- استنتج ان المتتالية  $(u_n)$  متقاربة.
- :نعتبر المتتالية  $(v_n)$  المعرفة من أجل كل عدد طبيعي كما يلي  $oldsymbol{3}$

$$v_n = \ln(u_n - 1)$$

- $v_0$  برهن أن المتتالية  $(v_n)$  هندسية أساسها أ2/2 وعين حدها الأول و
  - n بدلاله n، ثم استنتج عبارة  $(u_n)$  بدلاله n
    - $(u_n)$  عين نهاية 3
    - المجموع  $S_n$  والجداء n حيث: 4

$$S_n = v_0 + v_1 + \dots + v_n$$
  
 $P_n = (u_0 - 1) \times (u_1 - 1) \times \dots \times (u_n - 1)$ 





وضع تخمينا حول اتجاه تغير المتتالية  $(u_n)$  وتقاربها:

. 2 يظهر لنا من تمثيل الحدود الأولى للمتتالية  $(u_n)$  أنها متزايدة وتتقارب نحو القيمة

2

 $1 < u_n < 2: n$  البرهان بالتراجع أنه من أجل كل عدد طبيعي (1 البرهان بالتراجع الله من أجل ال

من أجل n=0 لدينا:

$$1 < u_0 < 2 \Rightarrow 1 < \frac{5}{4} < 2 \dots (*)$$

 $: (1 < u_{n+1} < 2)$  نفرض أن  $(1 < u_n < 2)$  نفرض في نفرض أن  $(1 < u_n < 2)$ 

لدينا:

$$1 < u_n < 2 \Rightarrow 0 < u_n - 1 < 1$$

$$\Rightarrow 0 < \sqrt{u_n - 1} < 1$$

$$\Rightarrow 1 < 1 + \sqrt{u_n - 1} < 2$$

$$\Rightarrow 1 < f(u_n) < 2$$

$$\Rightarrow 1 < u_{n+1} < 2 \dots (**)$$

حسب مبدأ البرهان بالتراجع: من (\*) و (\*\*) نجد:

$$1 < u_n < 2$$

 $\overline{\mathbb{N}}$  اثبات ان المتتالية  $(u_n)$  متزايدة تماما على  $\mathbb{O}$ 

$$u_{n+1} - u_n = 1 + \sqrt{u_n - 1} - u_n$$

$$= \frac{(1 - u_n + \sqrt{u_n - 1})(1 - u_n - \sqrt{u_n - 1})}{1 - u_n - \sqrt{u_n - 1}}$$

$$= \frac{(1 - u_n)^2 - (u_n - 1)}{1 - \sqrt{u_n - 1} - u_n}$$

$$= \frac{(u_n - 1)^2 - (u_n - 1)}{1 - \sqrt{u_n - 1} - u_n}$$

$$= \frac{(u_n - 1)(u_n - 1 - 1)}{1 - \sqrt{u_n - 1} - u_n}$$

$$= \frac{(u_n - 1)(u_n - 2)}{1 - u_n - \sqrt{u_n - 1}}$$

$$= \frac{-(u_n - 1)(u_n - 2)}{u_n - 1 + \sqrt{u_n - 1}}$$

 $(1 < u_n < 2)$  بما أن:

لدينا:  $u_n-1+\sqrt{u_n-1}\geq 0$  ومنه:  $u_n-1+\sqrt{u_n-1}\geq 0$  اذن إشارة الفرق من إشارة البسط:

$$-(u_n - 1)(u_n - 2) = 0 \Rightarrow \begin{cases} u_n - 1 = 0 \\ \emptyset \end{cases}$$

$$u_n - 2 = 0$$

$$v_n = 1$$

$$v_n = 1$$

$$v_n = 2$$

| $u_n$           | -∞ | 1 |   | 2 | +∞ |
|-----------------|----|---|---|---|----|
| $u_{n+1} - u_n$ | _  | 0 | + | 0 | _  |

 $\mathbb{N}$  إذن  $(u_n)$  متزايدة

استنتاج ان المتتالية  $(u_n)$  متقاربة 3

8

برهان أن المتتالية  $(v_n)$  هندسية :  $\bigcirc$ 

لدينا:

$$v_{n+1} = \ln(u_{n+1} - 1)$$

$$= \ln(1 + \sqrt{u_n - 1} - 1)$$

$$= \ln(\sqrt{u_n - 1})$$

$$= \ln\left((u_n - 1)^{\frac{1}{2}}\right)$$

$$= \frac{1}{2}\ln(u_n - 1)$$

$$= \frac{1}{2}v_n$$

ولدينا:

$$v_0 = \ln(u_0 - 1)$$
$$= \ln\left(\frac{5}{4} - 1\right)$$
$$= \ln\left(\frac{1}{4}\right)$$
$$= -\ln 4$$

 $v_0 = -\ln(4)$  اذن  $(v_n)$  متتالية هندسية أساسها  $\left[rac{1}{2}
ight]$  وحدها الأول

n کتابة عبارة  $(v_n)$  و  $(v_n)$  بدلالة 2

لدينا:

$$v_n = -\ln(4) \left(\frac{1}{2}\right)^n$$

ولدينا:

$$v_n = \ln(u_n - 1) \Rightarrow e^{v_n} = u_n - 1$$

$$\Rightarrow u_n = e^{v_n} + 1$$

$$\Rightarrow u_n = e^{-\ln(4)\left(\frac{1}{2}\right)^n} + 1$$

$$\Rightarrow u_n = 4^{-\left(\frac{1}{2}\right)^n} + 1$$

 $\overline{\ \ }:(u_n)$ تعيين نهاية  $\overline{\ \ \ }$ 

$$lim(u_n) = lim \left(4^{-\left(\frac{1}{2}\right)^n} + 1\right)$$

$$= 1 + 1$$

$$= \boxed{2}$$

$$\lim\left(-\left(\frac{1}{2}\right)^{n}\right) = 0$$

$$: P_{n} \text{ والجداء } S_{n} \text{ Egospan } n \text{ with } n \text{ with } n \text{ such } n \text{ with } n \text{ such } n \text{ with } n \text{ such } n \text{ su$$

◄ بالتوفيق في شهادة البكالوريا