مِلاَ جِظِيرٌ: ﴿ كُو جِيَّالُهَا أَثْنَا الْكِالِي اللَّهِ الْكِالِي اللَّهِ اللَّهِ اللَّهِ اللَّهِ

تمــرين شامل في المتتاليات العدديـــة

: متتالية هندسية متناقصة تماما حدّها الأوّل d_0 و أساسها q' حيث (d_n)

: غيث
$$q'$$
 اسامها d_0 و أسامها d_0 عيث (d_n) متتالية هندسية متناقصة تماما حدّها الأوّل d_0 و أسامها d_0 d_0

 $\cdot \lim_{n \to +\infty} d_n$ بدلالة n ثمّ احسب d_n بدلالة n بدلالة n بدلالة n بدلالة d_n بدل

، وسيط حقيقي موجب تماماa (II)

 $f_a(x) = \ln\left(rac{a+x}{1+ax}
ight) + x:$ كايلي $-\infty; -a[\cup] -rac{1}{a}; +\infty[$ الدّالة العددية المعرفة على المجال f_a ا - احسب $f_{a}\left(x
ight)$ و $\lim_{x o -\infty} f_{a}\left(x
ight)$ - احسب 1

: المتتالية العددية المعرفة على (v_n) (III)

 $v_n \neq 0: \mathbb{N}$ من n من أجل كل من أجل أنّه من أجل - 1

، عين قيمة a حيّ تكون المتتالية (v_n) ثابتة - 2

 $\frac{1}{a}$ نفرض أنّ $a \neq 1$ عدد حقیقی موجب تماما بختلف عن $b \cdot a \neq 1$ نفرض (IV)

 $w_n = rac{v_n - b}{v_n + h}$: بالمتتالية العددية المعرفة على الميتالية العددية المعرفة على المتتالية العددية المعرفة على

. a بدلالة w_0 بدلالة u_0 v_n بدلالة كل من v_n و v_n بدلالة كل من v_n بدلالة كل من v_n و v_n و v_n بدلالة كل من v_n و v_n و v_n بدلالة كل من v_n و v_n و

أ - اكتب بدلالة n المجموع s_n حيث : $w_n = w_0 + w_1 + w_2 + \dots + w_n$ أ - اكتب بدلالة s_n احسب

.
$$s'_n = \frac{1}{v_0+1} + \frac{1}{v_1+1} + \frac{1}{v_2+1} + \dots + \frac{1}{v_n+1} : عيث s'_n = s'_n$$
 جيث - اکتب بدلالة n المجموع n حيث $s'_n = \frac{1}{v_0+1} + \frac{1}{v_$

ullet احسب s_n' ، أمّ استنتج طبيعة المتتألية ا $\sum_{n o +\infty}^n s_n'$ احسب

$$s_n'' = \frac{1}{\left(v_0+1\right)^2} + \frac{1}{\left(v_1+1\right)^2} + \frac{1}{\left(v_2+1\right)^2} + \dots + \frac{1}{\left(v_n+1\right)^2} :$$
ج - اكتب بدلالة n المجموع $s_n'' = \frac{1}{\left(v_0+1\right)^2} + \frac{1}{\left(v_0+1\right)^2} + \frac{1}{\left(v_0+1\right)^2} + \dots$

د - اكتب بدلالة كل من n و m المجموع $h_n=w_0^m+w_1^m+w_2^m+\ldots +w_n^m$ د - اكتب بدلالة كل من n عدد طبيعي أكبر تماما من

، $G_n = |w_0 \times w_1 \times w_2 \times \dots \times w_n|$ و - اكتب بدلالة n الجداء G_n حيث $G_n = |w_0 \times w_1 \times w_2 \times \dots \times w_n|$

، (G_n) استنج طبیعة المتتالیة ، $\lim_{n \to +\infty} G_n$ احسب •

 $E_n = e^{w_0} \times e^{w_1} \times e^{w_2} \times \dots \times e^{w_n}$ - اكتب بدلالة $e^{w_1} \times e^{w_2} \times \dots \times e^{w_n}$ - و

• ماهى طبيعة المتتالية (E_n) ؟ برر إجابتك

. $P_n = w_0^{2020} \times w_1^{2020} \times w_2^{2020} \times \dots \times w_n^{2020}$: ي - اكتب بدلالة n الجداء P_n حيث

• بيّن أنّ المتتالية (P_n) متقاربة

•
$$\frac{2}{1+\alpha^{n+2}}-1=\frac{1-\alpha^{n+2}}{1+\alpha^{n+2}}:$$
 فإنّ $\alpha\in\mathbb{R}^*-\{1\}$ و $n\in\mathbb{N}$ و $n\in\mathbb{N}$ فإنّ $\alpha\in\mathbb{R}^*$

 $\cdot \lim_{n o +\infty} v_n$ برهن بالتراجع أنّه من أجل كل كل $n = \frac{2}{1 + \left(-rac{1}{2}
ight)^{n+1}} - 1 : n \in \mathbb{N}$ برهن بالتراجع أنّه من أجل كل

• $f_3(x) = \ln\left(\frac{3+x}{1+3x}\right) + x$: کیایلی $f_3(x) = \ln\left(\frac{3+x}{1+3x}\right) + x$ الدّالة العددیة المعرفة علی $f_3(x)$ oxedownونسمّي $O; \overrightarrow{i}; \overrightarrow{j}$ حيث مستوٍ منسوب إلى المعلم المتعامد والمتجانس $O; \overrightarrow{i}; \overrightarrow{j}$ حيث مستوٍ منسوب إلى المعلم المتعامد والمتجانس مستوي المعلم ، [1;4] ادرس تغیّرات الدّالة f_3 علی المجال -1، [1;4] على y=x على (Δ) بيّن أنّ (Δ) بالنسبة إلى المستقيم (Δ) ذو المعادلة (Δ) على (C_{f_3}) على (Δ) على (Δ) بيّن أنّ (Δ) دو المعادلة (Δ) على (Δ) على (Δ) بيّن أنّ (Δ) بيّن أنّ (Δ) • [1;4] على المجال (C_{f_3}) على المجال 3 $f_{3}\left(x
ight)\in\left[1;4
ight]$. فإنّ $x\in\left[1;4
ight]$ عن عن - 4 • $u_{n+1} = f_3\left(u_n
ight): n$ عدد طبيعي $u_0 = 3$ ومن أجل كل عدد طبيعي (VI) المتتالية العددية المعرفة ب $\cdot (u_n)$ أ - برّر وجود المتتالية - 1 . (استعمال المنحنى (C_{f_3}) والمستقيم (Δ) ، مثّل الحدود u_1 ، u_2 ، u_3 و u_3 على محور الفواصل (دون حسابها ومبرزا خطوط الإنشاء) . ج - ضع تخمينا حول اتّجاه تغيّر المتتالية (u_n) وتقاربها $0.1 \leq u_n \prec 4: n$ عدد طبیعی عاد من أجل من أجل عدد طبیعی عاد التراجع أنّه من أجل عدد التراجع أنّه من أجل عدد التراجع أنّه من أجل

ب - بيّن أنّه من أُجل كل عدد طبيعي $u_n:n$ عدد طبيعي بنتج إنّجاه تغيّر المتتالية $u_{n+1} \preceq u_n:n$

ج - أثبت أنّ المتتالية (u_n) متقاربة ثمّ أوجد نهايتها .

. $f_{3}'(x) \leq f_{3}'(4)$ فإنّ الله عن أجل كل x من المجال x من المجال x فإنّ من أجل من أجل x من المجال x من المجال

 \cdot ($\int\limits_{1}^{u_{n}}f'_{3}\left(x
ight)dx\preceq\int\limits_{1}^{u_{n}}f'_{3}\left(4
ight)dx$ ج - بيّن أنّه من أجل كل 1 : $n\in\mathbb{N}$ عن أنّه من أجل كل 1 : $n\in\mathbb{N}$ بين أنّه من أجل كل 1

 $\cdot \lim_{n \to +\infty} u_n$ د - بيّن أنّه من أجل كل n عدد طبيعي $u_n = 2\left(\frac{83}{91}\right)^n$: عدد طبيعي

: حيث $\lim_{n\to+\infty} T_n$ حيث - 4

$$T_n = \sum_{k=0}^{k=n-1} \ln\left(\frac{1+3u_k}{u_k+3}\right) = \ln\left(\frac{1+3u_0}{3+u_0}\right) + \ln\left(\frac{1+3u_1}{3+u_1}\right) + \ln\left(\frac{1+3u_2}{3+u_2}\right) + \dots + \ln\left(\frac{1+3u_{n-1}}{3+u_{n-1}}\right)$$

a=5:نضع فی هذا الجزء (VII)

، $L_{n+1}=2L_nf_5\left(L_n
ight)-L_n^2$ لدينا $n\in\mathbb{N}$ لدينا $n\in\mathbb{N}$ ومن أجل كل المتتالية العددية المعرفة ب

x=1 لَا $g\left(x
ight)-x=0$ متزايدة ، وأنّ $g\left(x
ight)=2x\ln\left(rac{5+x}{1+5x}
ight)+x^{2}$: بأخذ أنّ g الدّالة المعرفة على $g\left(x
ight)-x=1$ بأخذ أنّ و الدّالة المعرفة على المرابع بالمرابع المرابع المرابع

 $0 \leq L_n \leq 1$. برهن بالتراجع أنّه من أجل كل عدد طبيعي n فإنّ

 $-2\ln\left(rac{5+x}{1+5x}
ight) + x \succeq 1 : x \in [0;1]$ کل اجل کل اجل کل $-2\ln\left(rac{5+x}{1+5x}
ight)$

، (موجبة (L_n) متزايدة (تذكّر أنّ حدودُ المتتالية (L_n) موجبة (L_n)

. بيّن أنّ ا (L_n) متقاربة ثمّ أوجد نهايتها . ج - بيّن أنّ المتتاليتان (u_n) و (u_n) متجاورتان . 3

بالتوفيـــــق والنجاح إن شاء الله في البكالوريـــ

قال الإمام عبر الممير ابن باويس رحمه الله تعالى: كم عالم يَسكنُ بيتًا بِالكِرَد *** وجاهل يَملكُ وورًا وقُرًّى لمَّا قرأتُ قولَهُ سُجانهُ *** نَحَنُ قَسَمنَا بينَهُمُ زَلَ الْمِرَا

التصحيح المفصل للتمرين الشامل في المتتاليات

الجيزء الأول

q' حساب d_0 ، d_0 و d_0 مُمّ استنتاج الأساس d_0

. $d_1 = -\frac{1}{9}$ اذن $d_1^3 = -\frac{1}{729}$: خد (2) نجاد له المعادلة $d_1^2 = d_0 \times d_2$: معناه $d_1^2 = d_0 \times d_2 = -\frac{10}{27}$ بعويض المعادلة $d_1^2 = d_0 \times d_2 = -\frac{10}{81}$ بعويض المعادلة $d_1^2 = d_1 \times d_2 = -\frac{10}{81}$ بعد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ المتالية $d_1^2 = d_1 \times d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$ معناه خيرة نجد حلولها هي $d_1^2 = d_1 \times d_2 = -\frac{1}{81}$

، $q' = rac{d_2}{d_1} = rac{d_1}{d_0} = rac{1}{3}$: هو (d_n) هو

$\lim_{n \to +\infty} d_n$ كابة d_n بدلالة n ثمّ حساب d_n

 $1 op -1 op rac{1}{3} op 1 op rac{1}{3} op 1 op rac{1}{3} op rac{1}{3} op rac{1}{3} op rac{1}{3} op n op 1 op 1$

$d_n \prec -rac{3}{10^3}$: یکونn حتی یکون گری عدد طبیعی محتی یکون

$$n \ln \left(rac{1}{3}
ight)
ightarrow \ln \left(rac{9}{10^3}
ight)$$
 معناه $\ln \left(rac{1}{3}
ight)^n
ightarrow \ln \left(rac{9}{10^3}
ight)$ أي $\ln \left(rac{9}{10^3}
ight)^n
ightarrow rac{9}{10^3}$ يكافئ : $-rac{1}{3} \left(rac{1}{3}
ight)^n
ightarrow -rac{3}{10^3}$ معناه $\ln \left(rac{9}{10^3}
ight)^n$ معناه $\ln \left(rac{9}{10^3}
ight)^n$ من هنا نجد أنّ أكبر عدد طبيعي n يحقّق $n
ightarrow -n$ هو : $n
ightarrow 4.2877$ من هنا نجد أنّ أكبر عدد طبيعي n يحقّق $n
ightarrow -n$ هو $n
ightarrow -n$ من هنا نجد أنّ أكبر عدد طبيعي $n
ightarrow -n$ هو $n
ightarrow -n$

$\lim_{x o +\infty} f_a\left(x ight)$ و $\lim_{x o -\infty} f_a\left(x ight)$ حساب $\int_{x o -\infty} f_a\left(x ight)$

$$\lim_{x \to -\infty} f_a(x) = \lim_{x \to -\infty} \left(\ln \left(\frac{a+x}{1+ax} \right) + x \right) = \lim_{x \to -\infty} \ln \left(\frac{a+x}{1+ax} \right) + \lim_{x \to -\infty} x = \ln \left(\frac{1}{a} \right) + \lim_{x \to -\infty} x = -\infty$$

$$\lim_{x \to +\infty} f_a(x) = \lim_{x \to +\infty} \left(\ln \left(\frac{a+x}{1+ax} \right) + x \right) = \lim_{x \to +\infty} \ln \left(\frac{a+x}{1+ax} \right) + \lim_{x \to +\infty} x = \ln \left(\frac{1}{a} \right) + \lim_{x \to +\infty} x = +\infty$$

الجـزء الثالث

.
$$v_{n+1} = rac{a+v_n}{1+av_n}$$
 : ومنه $v_{n+1} = e^{f_a(v_n)-v_n} = e^{\ln\left(rac{a+v_n}{1+av_n}
ight)+v_n-v_n} = e^{\ln\left(rac{a+v_n}{1+av_n}
ight)}$: لدينا

$v_n eq 0: \mathbb{N}$ من n من أجل كل n من البرهان بالتّراجع أنّه من أجل كل

- $oldsymbol{v}$ من أجل n=0 لدينا : a
 eq 0 ونعلم أنّ a
 eq 0 ومنه a
 eq 0 إذن الخاصية " $v_n
 eq 0$ لدينا : $v_0=a$ ونعلم أنّ $v_0=a$ ومنه v_0
 - $v_{n+1}
 eq 0$ نفرض أنّ $v_n
 eq 0$ ونبرهن أنّ $v_n
 eq 0$

 $v_n
eq 0: \mathbb{N}$ بالبرهان بالتراجع فإنّه من أجل كل n من

تعيين قيمة a حتّى تكون المتتالية (v_n) ثابتة a

الجـزء الرابع

a إيجاد قيمة b حتّى تكون المتتالية (w_n) هندسية مع تعيين كل من أساسها q وحدّها الأول w_0 بدلالة b

: بما أنّ 0
eq ba
eq 1 فإنّه لدينا

$$w_{n+1} = \frac{v_{n+1} - b}{v_{n+1} + b} = \frac{\frac{a + v_n}{1 + av_n} - b}{\frac{a + v_n}{1 + av_n} + b} = \frac{\frac{a + v_n - b - bav_n}{1 + av_n}}{\frac{a + v_n + b + bav_n}{1 + av_n}} = \frac{(1 - ba)v_n + (a - b)}{(1 + ba)v_n + (a + b)} = \frac{1 - ba}{1 + ba} \cdot \frac{v_n + \frac{a - b}{1 - ba}}{v_n + \frac{a + b}{1 + ba}}$$

$$\left\{egin{array}{l} a\left(b^2-1
ight)=0 \ a\left(b^2-1
ight)=0 \end{array}
ight. :$$
هناه حتّی تکون المتتالیة $\left\{egin{array}{l} a-b=-b+b^2a \ a+b=b+b^2a \end{array}
ight. :$ یکافئ : $\left\{egin{array}{l} \dfrac{a-b}{1-ba}=-b \ \dfrac{a+b}{1+ba}=b \end{array}
ight. :$ معناه : $\left\{egin{array}{l} \dfrac{a-b}{1-ba}=-b \ \dfrac{a+b}{1+ba}=b \end{array}
ight. :$

 $a\in\mathbb{R}_+^*$ بما أنّ $a\in\mathbb{R}_+^*$ فإنّ : b=1 حلولها هي : b=1 و b=1 و ما أنّ $a\in\mathbb{R}_+^*$ عدد حقيقي موجب تماما فإنّ

$$w_{n+1} = rac{1-a}{1+a} \cdot rac{v_n + rac{a-1}{1-a}}{v_n + rac{a+1}{1+a}} = rac{1-a}{1+a} \cdot rac{v_n - 1}{v_n + 1} = rac{1-a}{1+a} \cdot w_n :$$
 إذن من أجل $b = 1$ أجل

 $w_0=rac{v_0-1}{v_0+1}=rac{a-1}{a+1}$ وعليه من أجل $q=rac{1-a}{1+a}$ متتالية هندسية أساسها $q=rac{1-a}{1+a}$

a من أجل قيمة b السابقة كتابة عبارة w_n ثمّ استنتاج عبارة v_n بدلالة كل من b

$$w_n = -\left(rac{1-a}{1+a}
ight)^{n+1}$$
 ومنه $w_n = rac{a-1}{a+1} \left(rac{1-a}{1+a}
ight)^n = -\left(rac{1-a}{1+a}
ight) \left(rac{1-a}{1+a}
ight)^n$ ومنه $w_n = w_0 imes q^n$: هندسية معناه $w_n = w_0 imes q^n$ ومنه

$$w_n+1=v_n\left(1-w_n
ight): w_n\cdot v_n+w_n=v_n-1:$$
 لدينا $w_n\left(v_n+1
ight)=v_n-1:$ يكافئ $w_n=v_n+1:$ ومنه $w_n+1=v_n$ ومنه $w_n+1=v_n$

$$v_n = rac{1 - \left(rac{1-a}{1+a}
ight)^{n+1}}{1 + \left(rac{1-a}{1+a}
ight)^{n+1}} : i$$
 : نام $v_n = rac{1 + \left(-\left(rac{1-a}{1+a}
ight)^{n+1}
ight)}{1 - \left(-\left(rac{1-a}{1+a}
ight)^{n+1}
ight)} : i$ بعويض عبارة w_n في المعادلة الأخيرة نجد $v_n = rac{1 + w_n}{1 - w_n}$

 $\lim_{n \to +\infty} v_n$ و $\lim_{n \to +\infty} w_n$ عساب كل من $\lim_{n \to +\infty} w_n$

: الدينا
$$a \prec 1 + a$$
 عدد حقيقي موجب تمامًا $a \prec 1 + a$ الدينا $a \prec 1 + a$ عدد حقيقي موجب تمامًا $a \prec 1 + a$

$$\bullet \lim_{n \to +\infty} w_n = \lim_{n \to +\infty} \left(-\left(\frac{1-a}{1+a}\right)^{n+1} \right) = -\lim_{n \to +\infty} \left(\frac{1-a}{1+a}\right)^{n+1} = 0$$

$$\bullet \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \left(\frac{1 - \left(\frac{1-a}{1+a}\right)^{n+1}}{1 + \left(\frac{1-a}{1+a}\right)^{n+1}} \right) = \frac{\lim_{n \to +\infty} \left(1 - \left(\frac{1-a}{1+a}\right)^{n+1}\right)}{\lim_{n \to +\infty} \left(1 + \left(\frac{1-a}{1+a}\right)^{n+1}\right)} = \frac{1 - \lim_{n \to +\infty} \left(\frac{1-a}{1+a}\right)^{n+1}}{1 + \lim_{n \to +\infty} \left(\frac{1-a}{1+a}\right)^{n+1}} = \frac{1 - 0}{1 + 0} = 1$$

a=3 و b=1 و b=3 - نضع في كلِّ ممّا يلي b=1

$$q=-rac{1}{2}$$
 من أجل $a=3$ لدينا $a=3$ من أجل من أجل الجموع $a=3$ من أجل من أجل الم

$$s_n = w_0 \left(rac{1 - q^{n+1}}{1 - q}
ight) = rac{1}{2} \left(rac{1 - \left(-rac{1}{2}
ight)^{n+1}}{1 - \left(-rac{1}{2}
ight)}
ight) = rac{1}{2} \left(rac{1 - \left(-rac{1}{2}
ight)^{n+1}}{rac{3}{2}}
ight) = rac{2}{3} \cdot rac{1}{2} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{$$

$$1 - 1 \prec -rac{1}{2} \prec 1:$$
 ولدينا $\lim_{n o +\infty} s_n = \lim_{n o +\infty} rac{1}{3} \left(1 - \left(-rac{1}{2}
ight)^{n+1}
ight) = rac{1}{3}:$ ولدينا

S'_n كتابة بدلالة n المجموع S'_n

$$v_n = rac{v_n - 1 + 1 - 1}{v_n + 1} = rac{v_n + 1 - 2}{v_n + 1} = rac{v_n + 1}{v_n + 1} - rac{2}{v_n + 1} = 1 - rac{2}{v_n + 1} : كدينا: rac{v_n - 1 + 1 - 1}{v_n + 1} = rac{1}{v_n + 1} = rac{1}{2} (1 - w_n) : كافئ : rac{1}{v_n + 1} = rac{1}{2} (1 - w_n) : كافئ : rac{1}{v_n + 1} = rac{1}{2} (1 - w_n) : كافئ : rac{1}{v_n + 1} = rac{1}{v_n + 1} = rac{1}{v_n + 1} : rac{1}{v_n + 1} = rac{1}{v_n + 1} : rac{1}{v_n + 1} = rac{1}{v_n + 1} : rac{1}{v_n$$

$$s'_{n} = \frac{1}{v_{0}+1} + \frac{1}{v_{1}+1} + \frac{1}{v_{2}+1} + \dots + \frac{1}{v_{n}+1} = \frac{1}{2}(1-w_{0}) + \frac{1}{2}(1-w_{1}) + \frac{1}{2}(1-w_{2}) + \dots + \frac{1}{2}(1-w_{n})$$

$$= \frac{1}{2}((1-w_{0}) + (1-w_{1}) + (1-w_{2}) + \dots + (1-w_{n})) = \frac{1}{2}(1+1+1+\dots + 1-(w_{0}+w_{1}+w_{2}+\dots + w_{n}))$$

$$= \frac{1}{2}((n+1)-s_{n}) = \frac{1}{2}\left((n+1) - \frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{n+1}\right)\right) = \frac{n}{2} + \frac{1}{2} - \frac{1}{3} - \frac{1}{3}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{n+1}$$

$$s'_n = rac{n}{2} + rac{1}{6} - rac{1}{3} \left(-rac{1}{2}
ight)^{n+2}$$
 : ومنه

$$(s_n')$$
 حساب من استنتاج طبیعة المتتالیة المتالیه مساب م $s_n' o \infty$

$$\cdot \lim_{n \to +\infty} s_n' = \lim_{n \to +\infty} \left(\frac{n}{2} + \frac{1}{6} - \frac{1}{3} \left(-\frac{1}{2} \right)^{n+2} \right) = \lim_{n \to +\infty} \left(\frac{n}{2} + \frac{1}{6} \right) - \lim_{n \to +\infty} \left(\frac{1}{3} \left(-\frac{1}{2} \right)^{n+2} \right) = +\infty :$$

e'' end n in V is in

$$(v_n+1)^2=\left(rac{1}{v_n+1}
ight)^2=\left(rac{1}{2}\left(1-w_n
ight)
ight)^2$$
 : وجدنا في السؤال السابق : وجدنا في السؤال السابق : وبتربيع الطرفين نجد

: إذْن
$$rac{1}{(v_n+1)^2}=rac{1}{4}\left(1-2w_n+w_n^2
ight)$$
 : ومنه $rac{1}{(v_n+1)^2}=rac{1}{4}(1-w_n)^2$

$$\begin{split} s_{n}'' &= \frac{1}{(v_{0}+1)^{2}} + \frac{1}{(v_{1}+1)^{2}} + \frac{1}{(v_{1}+1)^{2}} + \dots + \frac{1}{(v_{n}+1)^{2}} \\ &= \frac{1}{4} \left(1 - 2w_{0} + w_{0}^{2} \right) + \frac{1}{4} \left(1 - 2w_{1} + w_{1}^{2} \right) + \frac{1}{4} \left(1 - 2w_{2} + w_{2}^{2} \right) + \dots + \frac{1}{4} \left(1 - 2w_{n} + w_{n}^{2} \right) \\ &= \frac{1}{4} \left(1 - 2w_{0} + w_{0}^{2} + 1 - 2w_{1} + w_{1}^{2} + 1 - 2w_{2} + w_{2}^{2} + \dots + 1 - 2w_{n} + w_{n}^{2} \right) \\ &= \frac{1}{4} \left(1 + 1 + 1 + \dots + 1 - 2 \left(w_{0} + w_{1} + w_{2} + \dots + w_{n} \right) + \left(w_{0}^{2} + w_{1}^{2} + w_{2}^{2} + \dots + w_{n}^{2} \right) \right) \\ &= \frac{1}{4} \left((n+1) - 2s_{n} + \left(w_{0}q^{0} \right)^{2} + \left(w_{0}q^{1} \right)^{2} + \left(w_{0}q^{2} \right)^{2} + \dots + \left(w_{0}q^{n} \right)^{2} \right) \\ &= \frac{1}{4} \left((n+1) - 2s_{n} + w_{0}^{2} \left(q^{0} \right)^{2} + w_{0}^{2} \left(q^{1} \right)^{2} + w_{0}^{2} \left(q^{2} \right)^{2} + \dots + w_{0}^{2} \left(q^{n} \right)^{2} \right) \\ &= \frac{1}{4} \left((n+1) - 2s_{n} + w_{0}^{2} \left(q^{0} + q^{2(1)} + q^{2(2)} + \dots + q^{2(n)} \right) \right) = \frac{1}{4} \left((n+1) - 2s_{n} + w_{0}^{2} \left(\frac{1 - \left(q^{2} \right)^{n+1}}{1 - q^{2}} \right) \right) \\ &= \frac{1}{4} \left((n+1) - 2 \left(\frac{1}{3} \left(1 - \left(-\frac{1}{2} \right)^{n+1} \right) \right) + \left(\frac{1}{2} \right)^{2} \left(\frac{1 - \left(\left(-\frac{1}{2} \right)^{2} \right)^{n+1}}{1 - \left(-\frac{1}{2} \right)^{2}} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{2}{3} \left(1 - \left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{4} \left(\frac{1 - \left(\frac{1}{4} \right)^{n+1}}{3} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{2}{3} \left(1 - \left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{3} \left(1 - \left(\frac{1}{4} \right)^{n+1} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{1}{3} \left(\left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{3} \left(1 - \left(\frac{1}{4} \right)^{n+1} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{1}{3} \left(\left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{3} \left(1 - \left(\frac{1}{4} \right)^{n+1} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{1}{3} \left(\left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{3} \left(1 - \left(\frac{1}{4} \right)^{n+1} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{1}{3} \left(\left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{3} \left(1 - \left(\frac{1}{4} \right)^{n+1} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{1}{3} \left(\left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{3} \left(\left(-\frac{1}{4} \right)^{n+1} \right) \right) \\ &= \frac{1}{4} \left((n+1) - \frac{1}{3} \left(\left(-\frac{1}{2} \right)^{n+1} \right) + \frac{1}{3} \left(\left(-\frac{1}{4} \right)^{n+1} \right) \right) \\ &= \frac{1}{4} \left(\left(n + \frac{1}{2} \right) - \frac{1}{3} \left(\left(-\frac{1}{2} \right)^{n+1} \right) \right$$

$$s''_n = rac{n}{4} - rac{1}{12} \left(\left(-rac{1}{2}
ight)^n + \left(rac{1}{4}
ight)^{n+1}
ight) + rac{1}{6}$$
 ومنه

$$w_n^m = (w_0 q^n)^m = w_0^m (q^n)^m = w_0^m \cdot q^{n(m)} = w_0^m \cdot (q^m)^n = \left(\frac{1}{2}\right)^m \cdot \left(\left(-\frac{1}{2}\right)^m\right)^n :$$
 $w_n^m = (w_0 q^n)^m = w_0^m (q^n)^m = w_0^m \cdot q^{n(m)} = w_0^m \cdot (q^m)^n = \left(\frac{1}{2}\right)^m \cdot \left(\left(-\frac{1}{2}\right)^m\right)^n :$
 $w_0^m = \left(\frac{1}{2}\right)^m$ sixumis fully $w_0^m = \left(-\frac{1}{2}\right)^m$ sixumis full $w_0^m = \left(-\frac{1}{2}\right)^m$

$$h_{n} = w_{0}^{m} \left(\frac{1 - (q^{m})^{n+1}}{1 - q^{m}} \right) = \left(\frac{1}{2} \right)^{m} \left(\frac{1 - \left(\left(-\frac{1}{2} \right)^{m} \right)^{n+1}}{1 - \left(-\frac{1}{2} \right)^{m}} \right) = \frac{1^{m}}{2^{m}} \left(\frac{1 - \left(\left(-\frac{1}{2} \right)^{m} \right)^{n+1}}{1 - \frac{(-1)^{m}}{2^{m}}} \right)$$

$$= \frac{1}{2^{m}} \left(\frac{1 - \left(-\frac{1}{2} \right)^{m(n+1)}}{\frac{2^{m}}{2^{m}}} \right) = \left(\frac{1 - \left(-\frac{1}{2} \right)^{m(n+1)}}{\frac{2^{m}}{2^{m}}} \right)$$

$$h_n=s_n$$
 ومنه $m=1$ أنّه لمّا $m=1$ عدد طبيعي أكبر تماما من $m=1$ لاحظ أنّه لمّا $m=1$ يُصبح $m=1$

هذا من جهة وم $\ln G_n \, = \, \ln |w_0 imes w_1 imes w_2 imes imes w_n| \, = \, \ln |w_0| + \ln |w_1| + \ln |w_2| + + \ln |w_n|$ جهة أخرى لدينا : $|\ln|w_n| = \ln|w_0| + \ln|q^n| = \ln|w_0| + \ln|q^n|$ إذن المتتالية $|\ln|w_n| = \ln|w_0| + \ln|w_0|$ حسابية أ $|\ln|w_n|$: وحدها الأول هو $r=\ln|q|=\ln\left|rac{1}{2}
ight|=-\ln 2$ وحدها الأول هو $r=\ln|q|=\ln\left|rac{1}{2}
ight|=\ln\left|rac{1}{2}
ight|=-\ln 2$

$$\ln G_n = \left(\frac{n+1}{2}\right) \left(\ln|w_0| + \ln|w_n|\right) = \left(\frac{n+1}{2}\right) \left(\ln|w_0| + \ln|w_0| + n\ln|q|\right) = \left(\frac{n+1}{2}\right) \left(2\ln|w_0| + n\ln|q|\right)$$

$$= (n+1) \left(\ln|w_0| + \frac{n}{2}\ln|q|\right) = (n+1) \left(-\ln(2) - \frac{n\ln(2)}{2}\right) = -(n+1)\ln(2) \left(1 + \frac{n}{2}\right)$$

$$G_n=e^{-(n+1)\ln(2)\left(1+rac{n}{2}
ight)}$$
 : وعليه

(G_n) حساب من ا $\lim_{n o +\infty} G_n$ مثمّ استنتاج طبیعة المتتالیة G_n

. لدينا :
$$\lim_{n \to +\infty} -(n+1)\ln{(2)}\left(1+rac{n}{2}
ight) = -\infty$$
 : لأنّ : $\lim_{n \to +\infty} G_n = \lim_{n \to +\infty} e^{-(n+1)\ln{(2)}\left(1+rac{n}{2}
ight)} = 0$ دينا : $\lim_{n \to +\infty} G_n = \lim_{n \to +\infty} e^{-(n+1)\ln{(2)}\left(1+rac{n}{2}
ight)} = 0$

E_n كابة بدلالة n الجداء

$$E_n = e^{w_0} \times e^{w_1} \times e^{w_2} \times \dots \times e^{w_n} = e^{w_0 + w_1 + w_2 + \dots + w_n} = e^{s_n} = e^{\frac{1}{3} \left(1 - \left(-\frac{1}{2}\right)^{n+1}\right)}$$

$$\cdot \lim_{n \to +\infty} \left(-rac{1}{2}
ight)^{n+1} = 0$$
 : يَنْ المتتالية $E_n = \lim_{n \to +\infty} e^{rac{1}{3}\left(1-\left(-rac{1}{2}
ight)^{n+1}
ight)} = e^{rac{1}{3}}$: $e^{rac{1}{3$

$$\begin{split} P_n &= w_0^{2020} \times w_1^{2020} \times w_2^{2020} \times \dots \times w_n^{2020} = \left(w_0 q^0\right)^{2020} \times \left(w_0 q^1\right)^{2020} \times \left(w_0 q^2\right)^{2020} \times \dots \times \left(w_0 q^n\right)^{2020} \\ &= w_0^{2020} \cdot \left(q^0\right)^{2020} \times w_0^{2020} \cdot \left(q^1\right)^{2020} \times w_0^{2020} \cdot \left(q^2\right)^{2020} \times \dots \times w_0^{2020} \cdot \left(q^n\right)^{2020} \\ &= w_0^{2020} \cdot w_0^{2020} \cdot w_0^{2020} \cdot \dots \cdot w_0^{2020} \times q^{2020(0)} \cdot q^{2020(1)} \cdot q^{2020(2)} \cdot \dots \cdot q^{2020(n)} \\ &= \left(w_0^{2020}\right)^{n+1} \times q^{2020(0+1+2+\dots+n)} = w_0^{2020(n+1)} \times q^{2020(n+1)} \times q^{2020(n+1)} = w_0^{2020(n+1)} \times q^{1010n(n+1)} \\ &= \left(\frac{1}{2}\right)^{2020(n+1)} \times \left(-\frac{1}{2}\right)^{1010n(n+1)} = \left(\frac{1}{2}\right)^{2020(n+1)} \times \left(\frac{1}{2}\right)^{1010n(n+1)} = \left(\frac{1}{2}\right)^{2020(n+1)+1010n(n+1)} \end{split}$$

 $P_n=\left(rac{1}{2}
ight)$ دمنه :

بيين أنّ المتتالية (P_n) متقاربة $\lim_{n o +\infty} P_n = \lim_{n o +\infty} \left(rac{1}{2}
ight)^{1010(n+1)(2+n)} = 0$ بيا = 0 المتعالية = 0

$$rac{2}{1+lpha^{n+2}}-1=rac{1-lpha^{n+2}}{1+lpha^{n+2}}:$$
فإنّ $lpha\in\mathbb{R}^*-\{1\}$ و $n\in\mathbb{N}$ و $n\in\mathbb{N}$ فارتحقّ أنّه من أجل كل $n\in\mathbb{N}$

$$\frac{2}{1+\alpha^{n+2}}-1=\frac{2}{1+\alpha^{n+2}}-\left(\frac{1+\alpha^{n+2}}{1+\alpha^{n+2}}\right)=\frac{2-1-\alpha^{n+2}}{1+\alpha^{n+2}}=\frac{1-\alpha^{n+2}}{1+\alpha^{n+2}}$$

من أجل
$$n=0$$
 لدينا : $v_n=rac{2}{1+\left(-rac{1}{2}
ight)^{n+1}}-1=rac{2}{1+\left(-rac{1}{2}
ight)^{0+1}}-1=rac{2}{1-rac{1}{2}}-1=4-1=3=v_0$ من أجل $n=0$ لدينا : $v_n=0$

$$v_{n+1}=rac{2}{1+\left(-rac{1}{2}
ight)^{n+2}}-1$$
 ونبرهن أنّ : $v_n=rac{2}{1+\left(-rac{1}{2}
ight)^{n+1}}-1$ ففرض أنّ : $v_n=rac{2}{1+\left(-rac{1}{2}
ight)^{n+1}}$

$$v_{n+1} = \frac{3 + v_n}{1 + 3v_n} = \frac{3 + \left(\frac{2}{1 + \left(-\frac{1}{2}\right)^{n+1}} - 1\right)}{1 + 3\left(\frac{2}{1 + \left(-\frac{1}{2}\right)^{n+1}} - 1\right)} = \frac{2 + \frac{2}{1 + \left(-\frac{1}{2}\right)^{n+1}}}{\frac{6}{1 + \left(-\frac{1}{2}\right)^{n+1}}} = \frac{2\left(1 + \left(-\frac{1}{2}\right)^{n+1}\right) + 2}{-2\left(1 + \left(-\frac{1}{2}\right)^{n+1}\right) + 6}$$

$$=\frac{4+2\left(-\frac{1}{2}\right)^{n+1}}{4-2\left(-\frac{1}{2}\right)^{n+1}}=\frac{4\left(1-\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{n+1}\right)}{4\left(1+\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{n+1}\right)}=\frac{1-\left(-\frac{1}{2}\right)^{n+2}}{1+\left(-\frac{1}{2}\right)^{n+2}}=\frac{2}{1+\left(-\frac{1}{2}\right)^{n+2}}-1$$

 $v_n=rac{2}{1+\left(-rac{1}{2}
ight)^{n+1}}-1$ إذن حسب البرهان بالتراجع فإنّه من أجل كل عدد طبيعي n فإنّn غيد البرهان بالتراجع وإنّه من أجل كل عدد البيعي والمائية n

$$1\cdot -1\prec -rac{1}{2}\prec 1:$$
 ولدينا $1: \lim_{n o +\infty} v_n = \lim_{n o +\infty} \left(rac{2}{1+\left(-rac{1}{2}
ight)^{n+1}}-1
ight)=1$ ولدينا

[1;4] على المجال [1;4] الدَّالة f₃ على المجال

الدَّالة f_3 معرَّفة وقابلة للاشتقاق على المجال [1;4] ودالتها المشتقة هي :

$$f_{3}'(x) = \frac{\frac{1+3x-3(3+x)}{(1+3x)^2}}{\frac{3+x}{1+3x}} + 1 = \frac{-8}{(3+x)(1+3x)} + 1 = \frac{-8+3+9x+x+3x^2}{(3+x)(1+3x)} = \frac{3x^2+10x-5}{(3+x)(1+3x)}$$

. [1;4] من إشارة $f_{3}{}'(x)$ من إشارة $3x^{2}+10x-5$ لأنّ : $3x^{2}+10x-5$ من إشارة ألما على المجال

نحل المعادلة التالية : $\Delta = \sqrt{160}$ عيزها هو $\Delta = b^2 - 4ac = 100 + 60 = 160$ عيزها هو $\Delta = \sqrt{160}$ عيزها هو : $\Delta = b^2 - 4ac = 100 + 60 = 160$ عيزها هو : $\Delta = \sqrt{160}$ عيزها عيزه

x	-∞		x_1		x_2		+∞
$A\left(x\right)$		+	0	_	0	+	

: لكن $x\in [1;4]$ و يكون جدول تغيّراتها كإيلى x_1 إذن الدّالة x_2 متزايدة تماما على المجال $x_2\prec 1$ و يكون جدول تغيّراتها كإيلى

x	1 4
$f_{3}'(x)$	+
$f_3(x)$	$\ln\left(\frac{7}{13}\right) + \epsilon$

$$\ln\left(\frac{1}{3} + \frac{8}{3+9x}\right) = \ln\left(\frac{1+3x}{3+9x} + \frac{8}{3+9x}\right) = \ln\left(\frac{9+3x}{3+9x}\right) = \ln\left(\frac{3(3+x)}{3(1+3x)}\right) = \ln\left(\frac{3+x}{1+3x}\right)$$

[1;4] على y=x دراسة وضعية المنحنى (C_{f_3}) بالنسبة إلى المستقيم (Δ) ذو المعادلة

$$f_3(x) - y = f_3(x) - x = \ln\left(\frac{3+x}{1+3x}\right) = \ln\left(\frac{1}{3} + \frac{8}{3+9x}\right)$$
 دراسة إشارة $f_3(x) - y = f_3(x)$

$$\ln\left(\frac{1}{3} + \frac{8}{3+9x}\right) \prec \ln\left(\frac{5}{12}\right) :$$

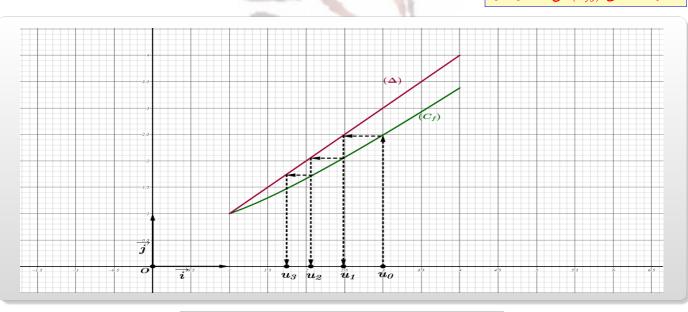
$$\frac{1}{3} + \frac{1}{9x+3} \prec \frac{5}{12} :$$

$$\frac{1}{9x+3} \prec \frac{1}{12} :$$

$$\frac{1}{9x+3} :$$

، (1;1) يقع تحت المستقيم (Δ) و يتقاطعان في النقطة $x\in [1;4]$. $X\in [1;4]$

$oxed{[1;4]}$ إنشاء المنحنى $oxed{(C_{f_3})}$ على المجال $oxed{oxed{\mathcal{L}}}$



 $\overline{u_3}$ إنشاء المنحنى (C_{f_3}) وتمثيل الحدود u_1 ، u_0 و u_2 ، u_3

$f_{3}\left(x ight)\in\left[1;4 ight]$: فإنّ $x\in\left[1;4 ight]$ كان لأنه إذا كان $x\in\left[1;4 ight]$

 $f_3(x) \preceq \ln\left(rac{7}{13}
ight) + 4:$ لدينا $f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x)$ معناه $f_3(x) \preceq f_3(x) \preceq f_3(x)$ معناه $f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x)$ فإنّ $f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x)$ فإنّ $f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x) \preceq f_3(x)$

الجـزء السادس

1 تبرير وجود المتتالية (u_n)

لدينا من السؤال 4 في الجزء الخامس فإنّ : [1;4] وعليه المتتالية (u_n) موجودة .

سر السابق . <u>سر الحدود u2 ، u1 ، u0 و u3</u> ممثّلة في الرسم السابق .

المُسَمَّعُ وضع تخمين حول اتّجاه تغيّر المتتالية (u_n) وتقاربها

من خلال البيان نلاحظ أنَّ حدود المتتالية (u_n) نتناقص وبالتالي نُحَمِّن أنَّها متناقصة كما نلاحظ أنَّها نتقارب نحو نقطة تقاطع المنحنى (C_{f_3}) مع المنصف الأول (Δ) وعليه نُحَمِّن أنّها متقاربة نحو النقطة ذات الفاصلة 1.

$1 \preceq u_n \prec 4: n$ البرهان بالتراجع أنّه من أجل كل عدد طبيعي \mathscr{L}

n=0 من أجل n=0 لدينا n=0 ونعلم أنّ : n=1 0 ومنه : n=1 ومنه n=1 ومنه الخاصية " n=1 لدينا n=1 عُقَقَة من أجل n=1

ullet نفرض أنّ : $u_n \prec 4$ فنبرهن أنّ : $u_n \prec 4$ فنبرهن أنّ : $u_n \prec 4$

: نات : f_3 ان u_{n+1} خا u_{n+1} خا u_n ان u_n خا u_n نات : u_n نات خا u_n خا

 $1 \leq u_{n+1} \prec 4:$ فإنّ $\ln\left(rac{7}{13}
ight) + 4 \prec 4$

 $1 \preceq u_n \prec 4$: أين عدد طبيعي n فإنّ $1 \preceq u_n \prec 4$ أيذ حسب البرهان بالترجع فإنّه من أجل كل عدد طبيعي

(u_n) تبيين أنّه من أجل كل عدد طبيعي $u_n:n$ $\leq u_{n+1}$ ثمّ استنتاج إتّجاه تغيّر المتتالية u_n

أنّ المتتالية (u_n) متقاربة u_n

. لدينا من أجل كل n < n < n معناه المتتالية (u_n) محدودة من الأسفل بالعدد 1 وبما أنّها متناقصة فإنّها متقاربة نحو $u_n < 1$

(u_n) إيجاد نهاية المتتالية \mathscr{L}

. عدد حقیقی $\lim_{n o +\infty}u_n=\lim_{n o +\infty}u_{n+1}=l$ عدد حقیقی ابن المتتالیة (u_n) متقاربة فإنّ

إيجاد 1

$$l=1: 3l:$$
 لدينا $f_3(l)=l: 1+3l:$ يكافئ $f_3(l)=l: 1+3l:$ أي $f_3(l)=l: 1+3l:$ معناه $f_3(l)=l: 1+3l:$ ومنه $f_3(l)=l: 1+3l:$ إذن $f_3(l)=l: 1+3l:$ ومنه $f_3(l)=l: 1+3l:$ إذن $f_3(l)=l: 1+3l:$

$f_3'\left(x ight) \preceq f_3'\left(4 ight)$: فإنّ الجال x من أجل كل x من المجال x من أبط

الدَّالة f_3^\prime معرفة وقابلة للاشتقاق على الججال [1;4] ودالتها المشتقة هي :

$$f_3''(x) = \frac{(6x+10)(3+x)(1+3x) - (6x+10)(3x^2+10x-5)}{(3+x)^2(1+3x)^2} = \frac{(6x+10)[3x^2+10x+3 - (3x^2+10x-5)]}{(3+x)^2(1+3x)^2}$$

ومنه :
$$f_3''(x) = \frac{16(3x+5)}{(3+x)^2(1+3x)^2}$$
 ، واضح أنّه من أجل كل x من المجال : $f_3''(x) > 0$ فإنّ : $f_3''(x) = \frac{16(3x+5)}{(3+x)^2(1+3x)^2}$

ر د.م.م. $f_3'(x) \preceq f_3'(4)$ الدّالة $f_3'(x) \preceq f_3'(4)$ الجّال الجال $x \preceq 4$ الجال الجال الجال الدينا بالدّالة الدّالة الدّ

$f_3'(4)$ حساب \mathcal{L}_3

$$f_3'(4) = \frac{3(4)^2 + 10(4) - 5}{(3+4)(1+3(4))} = \frac{3(16) + 40 - 5}{(7)(13)} = \frac{83}{91}$$

$u_{n+1}-1 \preceq rac{83}{91} \left(u_n-1 ight): n \in \mathbb{N}$ تبيين أنّه من أجل كل

- حيث c_1 عددين حقيقين - $[f_3\left(x
ight)+c_1]_1^{u_n} \preceq f_3{}'\left(4
ight)[x+c_2]_1^{u_n}$ عددين حقيقين - عددين حقيقين - معناه

. وعليه $u_{n+1}-1 \preceq rac{83}{91} \left(u_n-1
ight)$ ومنه $f_3\left(u_n
ight)-f_3\left(1
ight) \preceq {f_3}'\left(4
ight) \left(u_n-1
ight)$ وعليه وع

$$0 \preceq u_n - 1 \preceq 2 {\left(rac{83}{91}
ight)}^n$$
: تبیین أنّه من أجل كل n عدد طبیعي $ilde{m}$

: الدينا
$$u_{n+1}-1 \preceq rac{83}{91} (u_n-1)$$
 - الدينا

$$n=0$$
: $u_1-1 \leq \frac{83}{81} (u_0-1)$

$$n=1 : u_2-1 \leq \frac{83}{81}(u_1-1)$$

$$n=2 : u_3-1 \leq \frac{83}{81} (u_2-1)$$

:

$$n = n - 2$$
: $u_{n-1} - 1 \le \frac{83}{81} (u_{n-2} - 1)$

$$n = n - 1$$
: $u_n - 1 \leq \frac{83}{81} (u_{n-1} - 1)$

بضرب المتباينات طرف بطرف نجد

$$(u_1-1)(u_2-1)(u_3-1)$$
...... $(u_{n-1}-1)(u_n-1) \leq \left(\frac{83}{91}\right)^n(u_0-1)(u_1-1)(u_2-1)$ $(u_{n-2}-1)(u_{n-1}-1)$

إذن بعد الاختزالات نجد :
$$(u_n-1) \preceq \left(\frac{83}{91}\right)^n$$
 هذا من جهة $u_n-1 \preceq \left(\frac{83}{91}\right)^n$ ومنه : $u_n-1 \preceq \left(\frac{83}{91}\right)^n$ هذا من جهة

$$0 \leq u_n - 1 \leq 2 \left(rac{83}{91}
ight)^n$$
 : بخد نجد أخرى لدينا $u_n = 1$ وعليه $u_n = 1$ ومدم $u_n = 1$ ومدم ومن جهة أخرى لدينا $u_n = 1$

 $\lim_{n\to+\infty}u_n$ استنتاج

: لدينا
$$\frac{83}{91} - 1 \prec \frac{83}{91} \prec 1$$
 لأنّ $\frac{1}{1} + \frac{83}{91} \prec 1$ إذن حسب النّهايات بالحصر نتحصّل على $\frac{1}{1} + \frac{83}{1} + \frac{1}{1} + \frac{1}{$

$$\lim_{n \to +\infty} u_n = 1$$
 ومنه: $\lim_{n \to +\infty} (u_n - 1) = 0$

 $\lim_{n\to+\infty}T_n$ حساب

$$\ln\left(rac{1+3u_{k}}{3+u_{k}}
ight)=u_{k}-u_{k+1}$$
 : ومنه $-\ln\left(rac{3+u_{k}}{1+3u_{k}}
ight)=u_{k}-f_{3}\left(u_{k}
ight)$ يَكُافَىٰ $f_{3}\left(u_{k}
ight)=\ln\left(rac{3+u_{k}}{1+3u_{k}}
ight)+u_{k}$ يَكُافَىٰ اللَّهِ اللَّهِ

$$T_{n} = \ln\left(\frac{1+3u_{0}}{3+u_{0}}\right) + \ln\left(\frac{1+3u_{1}}{3+u_{1}}\right) + \ln\left(\frac{1+3u_{2}}{3+u_{2}}\right) + \dots + \ln\left(\frac{1+3u_{n-1}}{3+u_{n-1}}\right)$$

$$= (u_{0}-u_{1}) + (u_{1}-u_{2}) + (u_{2}-u_{3}) + \dots + (u_{n-2}-u_{n-1}) + (u_{n-1}-u_{n})$$

$$= u_{0}-u_{n}$$

$$\cdot \lim_{n \to +\infty} T_n = \lim_{n \to +\infty} (3-u_n) = 3 - \lim_{n \to +\infty} u_n = 3-1 = 2$$
 : ومنه $T_n = 3 - u_n$: ومنه

الجـزء السابع

$$L_{n+1} = 2L_n f_5\left(L_n
ight) - L_n^2 = 2L_n \left(\ln\left(rac{5+L_n}{1+5L_n}
ight) + L_n
ight) - L_n^2 = 2L_n \cdot \ln\left(rac{5+L_n}{1+5L_n}
ight) + 2L_n^2 - L_n^2 = 2L_n \cdot \ln\left(rac{5+L_n}{1+5L_n}
ight) + L_n^2 \quad : L_{n+1} = g\left(L_n
ight) \quad : L_{n+1$$

 $0 \preceq L_n \preceq 1$ البرهان بالتراجع أنّه من أجل كل عدد طبيعي n فإنّ $1 \preceq 1$

n=0 من أجل n=0 لدينا $1=rac{1}{5}$ ونعلم أنّ $1=rac{1}{5} \preceq 1$ وعليه 1=1 وعليه 1=1

- ullet نفرض أنّ $1: L_n \preceq L_n \preceq 0$ ونبرهن أنّ $1: L_n \preceq 1$
- $0 \leq L_{n+1} \leq 1$ وعليه $g(0) \leq g(L_n) \leq g(1)$ لدينا من الفرض $g(1) \leq L_n \leq 1$ وعليه $g(0) \leq L_n \leq 1$ لدينا من الفرض
 - $0 \preceq L_n \preceq 1$ فإنّn عدد طبيعي n فإنّn عدد فإنّه من أجل كل عدد البيعي n

$2\ln\left(\frac{5+x}{1+5x}\right)+x\succeq 1:x\in[0;1]$ کی آبه من أجل کل $2\ln\left(\frac{5+x}{1+5x}\right)$

 $h\left(x
ight)=2\ln\left(rac{5+x}{1+5x}
ight)+x:\left[0;1
ight]:$ نضع من أجل كل x من المجال

الدَّالة h معرَّفة وقابلة للاشتقاق على المجال [0;1] ودالتها المشتقة هي :

$$h'(x) = 2\left(\frac{\frac{1+5x-5(5+x)}{(1+5x)^2}}{\frac{5+x}{1+5x}}\right) + 1 = 2\left(\frac{-24}{(1+5x)(5+x)}\right) + 1 = \frac{5x^2+26x-43}{(1+5x)(5+x)}$$

. [0;1] من إشارة h'(x) من إشارة $5x^2 + 26x - 43$ لأنّ : (5+x)(1+5x) موجب تماما على المجال

لنحل المعادلة التالية : $\Delta = \sqrt{1536}$ عيزها هو $\Delta = b^2 - 4ac = 676 + 860 = 1536$ عيزها هو $\Delta = \sqrt{1536}$ عيزها هو $\Delta = b^2 - 4ac = 676 + 860 = 1536$ عيزها هو $\Delta = \sqrt{1536}$ عيزها هو $\Delta = b^2 - 4ac = 676 + 860 = 1536$ عيزها هو $\Delta = \sqrt{1536}$ عيزها عيز

x	-∞	x_1			x_2 $+\infty$		
B(x)		+	0	- 1	0	+	

. [0;1] لكن $x \in [0;1]$ و $x_1 \prec 0$ و منه $x_2 \succ 1$ و منه $x_1 \prec 0$ و منه $x_2 \succ 1$ و الجال $x_1 \prec 0$

 $2\ln\left(rac{5+x}{1+5x}
ight)+x\succeq 1:$ وعليه لمّا $x'\geq x'\leq 1$ ومنه $x'\leq 1$ ومنه $x'\leq 1$ ومنه $x'\leq 1$ ومنه $x'\leq 1$ ومنه وعليه لمّا وعليه المّالة المّا

متزايدة (L_n) متزايدة إثبات أنّ المتتالية (L_n)

بما أنّ حدود المتتالية (L_n) موجبة فإنّ :

ومن السؤال السابق
$$rac{L_{n+1}}{L_n} = rac{2L_n f_5\left(L_n
ight) - L_n^2}{L_n} = 2f_5\left(L_n
ight) - L_n = 2\left(\ln\left(rac{5+L_n}{1+5L_n}
ight) + L_n
ight) - L_n = 2\ln\left(rac{5+L_n}{1+5L_n}
ight) + L_n$$

وجدنا أنّه من أجل كل x من المجال $\left(\frac{5+L_n}{1+5L_n}\right)+x\succeq 1$ فإنّ : $1+\frac{5}{1+5L_n}$ وعليه : $1+\frac{5}{1+5L_n}$ وعليه : $1+\frac{5}{1+5L_n}$

. متزايدة و.هـ.م $L_{n+1} \succeq L_n$ ومنه $L_{n+1} \succeq L_n$ إذن $L_{n+1} \succeq L_n \succeq L_n$ لنجد في الأخير أنّ المتتالية $L_{n+1} \succeq L_n$ متزايدة و.هـ.م

تبيين أنّ (L_n) متقاربة ثمّ إيجاد نهايتها

1 وجدنا أنّ $1 \leq L_n \leq L_n$ هذا معناه أنّ المتتآلية (L_n) محدودة من الأعلى بالعدد 1 وبما أنّها متزايدة فهي متقاربة نحو

 (L_n) إيجاد نهاية المتتالية

 $L_n=\lim_{n o +\infty}L_n=\lim_{n o +\infty}L_{n+1}=l_1:$ بما أنّ (L_n) متقاربة فإنّ

لدينا : $l_1=g\left(l_1
ight)$ أي : $l_1=0$ ومنه حسب ماهو مُعطى $l_1=1$ گيد أنّ : $l_1=1$ ومنه $g\left(l_1
ight)-l_1=0$ ومنه حسب ماهو مُعطى

وجدنا ممَّا سبق أنَّ :

- المتتالية (u_n) متناقصة بينما المتتالية (L_n) متزايدة ullet
 - $\lim_{n\to+\infty}L_n=\lim_{n\to+\infty}u_n=1$

. إذن المتتاليتان (u_n) و (L_n) متجاورتان

_____ بالتوفيق والنّجاح إن شاء الله في شهادة البكالوريا _____

أعظم هندسة في العالم:

بناء جسرٍ من الأمل ... على نحرٍ من اليأس!!