المدة الزمنية: 2 سا

المستوى: جذع مشترك علوم وتكنولوجيا

إمتحان الفصل الأول في مادة العلوم الفيزيائية

التمرين الأول:

يستعمل النشادر في عدة مجالات منها تصنيع الأسمدة الآزوتية و صناعة الأدوية و البلاستيك و غيرها من المنتجات, الصيغة المجملة لجزيء النشادر XH_m .

I.

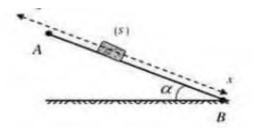
- 1. ما هو مفهوم الجزيء.
- 2. العنصر X كتلة نواته 10^{-27} Kg العنصر m=23,38 العنصر.
 - 3. أوجد قيمة العدد الشحني Z إذا علمت أن عدد البروتونات Z يساوي عدد النترونات N.
 - 4. استنتج رمز العنصر X
 - أحسب قيمة شحنة نواته.
 - $q=-4.8 . 10^{-19} \, C$. ير مز لشاردة هذا العنصر X^{-n} وشحنة شاردته هي . 6 . وأوجد العدد n
 - 7. أعط التوزيع الالكتروني للعنصر X ثم حدد موقعه في الجدول الدوري
 - 8. على أي أساس يتم تصنيف العناصر الكيميائية في الجدول الدوري.
 - اكتب معادلة تشرد العنصر X , واذكر اسم الغاز الخامل الأقرب له.
 - X مع عدد M من ذرات الهيدروجين M مع عدد M
- 1. اعط نموذج لويس للعنصر X واستنتج العدد m اللازم من الهيدروجين H لتشكيل غاز النشادر.
 - 2. اعط تمثيل لويس للجزيء المتشكل.
 - 3. حدد الصيغة الرمزية لجليسبي. ثم الشكل الهندسي (بنيته) الموافق له
 - 4. اعط تمثيل كرام للجزيء المتشكل.

معطيات:

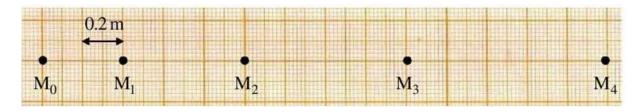
 $mp = 1,67 .10^{-27} Kg$

/é/= 1,6. 10⁻¹⁹C

17Cl 10Ne 7N 9F 6C


التمرين الثاني:

الصيغة المفصلة	نموذج لويس	الصيغة المجملة
		C ₃ H ₈ O
		C ₅ H ₇ Cl
	الصيغة المفصلة	نموذج لويس الصيغة المفصلة


- 1. أكمل الجدول.
- 2. هل يملك الجزيء C_3H_8O مماكبات؟ إذا كان الجواب نعم أذكر ها (حالتين)

التمرين الثالث:

a نترك جسما صلباa ينزلق على طاولة هوائية تميل على الأفق بزاوية

 $\Gamma = 0.08$ من خلال التصوير المتعاقب لمواضع حركة الجسم S خلال مجالات زمنية متساوية ومتعاقبة S فلاحظ أن مسار حركة الجسم عبارة عن خط مستقيم

- 1. حسب رأيك هل سرعة الجسم تتزايد, تتناقص, تبقى ثابتة؟ علل.
 - M_{3} و M_{2} و M_{1} و M_{3} و M_{2} و M_{3} و M_{2} و M_{3}
 - 3. مثل أشعة السرعة اللحظية v_1 v_2 و v_3 باستعمال سلم الرسم

 $1 \text{cm} \longrightarrow 4 \text{m/s}$

- M_2 الموافق الموضع Δv الموافق الموضع 4.
- ماذا تستنتج بالنسبة للقوى المطبقة على الجسم ؟ مثلها كيفيا في الموضع 1.
 - 6. ماذا يمكنك أن تستنتجه بالنسبة لطبيعة الحركة ؟

وفقكم الله

الإجابة النموذجية:

التمرين<u>01</u>:

- 1. مفهوم الجزيء: هو أصغر جزء مكون للمادة و يحمل صفاتها ...نحصل عليه عند تقسيم المادة.... ويتكون من ذرتين أو أكثر.
 - 2. قيمة العدد الكتلى A لهذا العنصر:

A= m نواة / mp

 $A = \frac{14}{14}$

3. قيمة العدد الشحنى Z إذا علمت أن عدد البروتونات Z يساوي عدد النترونات N

 $Z = A/2 = \frac{7}{}$

4. استنتاج رمز العنصر X:

N

 $q = 11.2 \quad 10^{-19} \text{ C}$.5

 $q=-4.8.\ 10^{-19}\ C$. يرمز لشاردة هذا العنصر X^{-n} وشحنة شاردته هي . 3

n العدد

n = q/e n = 3

7. التوزيع الالكتروني للعنصر X

 K^2L^5

8. و تحديد موقعه في الجدول الدوري

السطر 2

العمود ٧

9. يتم تصنيف العناصر الكيميائية في الجدول الدوري.

رقم السطر هو عدد المدارات

رقم العمود هو عدد إلكترونات المدار الأخير

10. معادلة تشرد العنصر X:

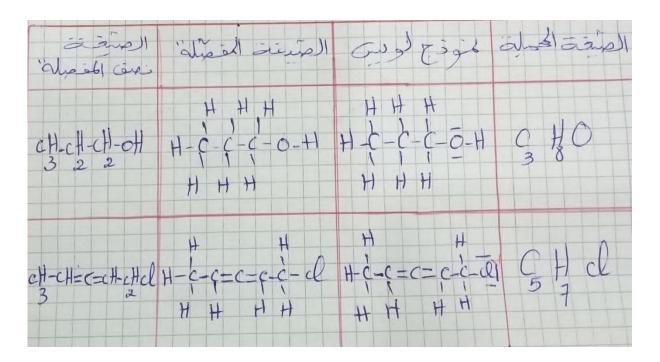
 $N+36 \longrightarrow N^{3-}$

اسم الغاز الخامل الأقرب له:

Ne

- III. يتحد العنصر X مع عدد m من ذرات الهيدروجين X.
 - 1. نموذج لويس للعنصر X

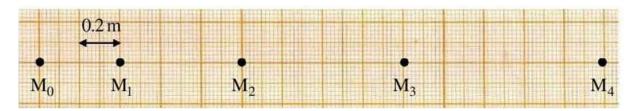
•<u>N</u>•


- 2. واستنتج العدد m اللازم من الهيدروجين H لتشكيل غاز النشادر: 3
 - 3. تمثيل لويس للجزيء المتشكل:

 AX_3E_1 الصيغة الرمزية لجليسبي:

5. الشكل الهندسي (بنيته) الموافق له: مثلت هرمي

6. تمثيل كرام للجزيء المتشكل:


التمرين20:

نعم يملك الجزيء C3H8O مماكبات

التمرين <u>03:</u>

من خلال التصوير المتعاقب لمواضع حركة الجسم S خلال مجالات زمنية متساوية ومتعاقبة S من خلال التصوير المتعاقب لمواضع حركة الجسم عبارة عن خط مستقيم نلاحظ أن مسار حركة الجسم عبارة عن خط مستقيم

1. سرعة الجسم تتزايد: لأن المسافت المتتالية خلال أزمنة متتالية ومتقايسة تتباعد.

 M_{3} و M_{2} و M_{1} و M_{3} و M_{2} و M_{3} و M_{2} و M_{3}

 $V_1 = 6.25 \text{ m/s}$

 $V_2 = 8.75 \text{m/s}$

 $V_3 = 11.25 \text{m/s}$

3. تمثیل أشعة السرعة اللحظیة v_1 و v_2 باستعمال سلم الرسم

1cm → 4m/s

خصائص شعاع السرعة:

المبدأ: الموضع

الحامل: منطبق على المسار المستقيم

الجهة: مع الحركة

القيمة:

طويلة 1.56cm = V1

طويلة 2.18cm= V2

طويلة 2.81cm = V3

 M_2 الموافق للموضع Δv الموافق للموضع 4.

خصائص شعاع تغير السرعة:

المبدأ: الموضع

الحامل: منطبق على المسار

الجهة مع الحركة

الطويلة: ثابتة

5. ماذا تستنتج بالنسبة للقوى المطبقة على الجسم و مثلها كيفيا في الموضع M_4 : ثابتة القيمة والجهة وخصائصها نفس خصائص شعاع تغير السرعة

ماذا يمكنك أن تستنتجه بالنسبة لطبيعة الحركة ؟ حركة مستقيمة متسارعة بانتظام.