الجمهورية الجزائرية الديمقراطية الشعبية

ثانویات الاغواط- المقاطعة (01) دورة مای 2024 وزارة التربية الوطنية

الامتحان التجريبي لبكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 ساعات ونصف

اختبار في مادة الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول يحتوي الموضوع الأوّل على 3 صفحات

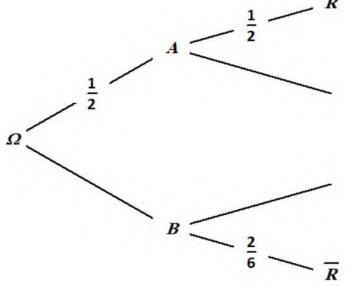
التمرين الأول (04 نقاط) :

 $u_{n+1}=rac{1}{6}u_n+rac{1}{3}$: نعتبر المتالية العددية (u_n) المعرفة بـ: $u_1=rac{1}{2}$ و بالعلاقة التراجعية . $v_n=u_n-rac{2}{5}$ و بالعلاقة التراجعية . $v_n=u_n$ المعرفة من اجل كل $v_n=u_n-rac{2}{5}$ بـن ان المتالية v_n هندسية يطلب تعيين اساسها.

.n بدلاله u_n بدلاله n بدلاله v_n بدلاله u_n

ووجهین \mathbf{B} عیر مزیفین بحیث: النرد \mathbf{A} به ثلاث اوجه حمراء و ثلاث اوجه بیضاء ، اما النرد \mathbf{B} به اربع اوجه حمراء و وجهین بیضاوین.

نختار عشو ائيا نردا ونرميه: إذا ظهر اللون الأحمر نحتفظ بهذا النرد ، اما اذا ظهر اللون الأبيض نغير النرد. ثم نرمي هذا النرد وهكذا دواليك.


. A_n نرمزبه الى الحدث: " رمي النرد n مرة " وبا \overline{An} إلى الحدث العكسي للحدث n

 R_n الى الحدث: "ظهور اللون الأحمر في الرمية n ". و به به \overline{Rn} إلى الحدث العكسي للحدث R_n الى احتمال الحدث n و n الى احتمال الحدث n الى احتمال الحدث n عين n عين n عين n عين n عين n اكمل الشجرة ثم عين n عين n

$$R_n=(R_n\cap A_n)\cup (R_n\cap A_n) \ r_n=-rac{1}{6}a_n+rac{2}{3}$$
: يين أنّ $r_n=rac{1}{6}a_n+rac{2}{3}$ د) ييّن أنّه من أجل كل $n\geq 1$

$$A_{n+1} = (A_n \cap R_n) \cup (\overline{A_n} \cap \overline{R_n})$$
د $n \geq 1$ کل کام أجل کل اله من أجل کام

$$n$$
 بدلالة a_n بدلالة $a_{n+1}=rac{1}{6}a_n+rac{1}{3}$ و) استنتج عبارة r_n بدلالة n ثمّ أحسب r_n

التمرين الثاني(04.5 نقاط):

- . \overline{z} هو مر افق العدد المركبة \overline{z} المعادلة ذات المجهول \overline{z} : \overline{z} \overline{z} هو مر افق العدد المركب \overline{z} (\overline{z} \overline{z}
 - في المستوي المنسوب إلى معلم متعامد ومتجانس $(o;\overrightarrow{u};\overrightarrow{v})$ ، نعتبر النقط D و D و D و D و D

$$z_D=3$$
 ، $z_C=\overline{z_B}$ ، $z_B=2+i\sqrt{3}$ ، $z_A=-1$: على الترتيب n عين قيم العدد الطبيعي n حتى يكون $(z_B-z_A)^n$ عددا حقيقيا سالبا . ب ABC عين طبيعة المثلث

- 3) أ/أكتب العدد $\frac{z_A-z_C}{z_D-z_c}$ على الشكل الأسي، ثم استنتج أن النقطة A صورة D بتحويل نقطي يطلب تعيينه. A أراكتب العدد $\frac{z_A-z_C}{z_D-z_c}$ على الشكل الأسي، ثم استنتج أن النقطة A صورة A بتحويل نقطي يطلب تعيينه. A
- $]0;+\infty[$ مجموعة النقط M من المستوي لاحقة التحقق: $z+1=2\sqrt{3}$. k. $e^{irac{\pi}{6}}$ تحقق المجال M من المستوي لاحقة الموجهة (Γ) ، ثم استنتج مجموعة النقط (Γ) عين قيسا للزاوية الموجهة $(\vec{u}; \overrightarrow{AB})$ ، ثم استنتج مجموعة النقط (Γ)
 - $-\overrightarrow{CA}+2\overrightarrow{CB}+lpha\overrightarrow{CD}=\overrightarrow{0}$: أ/ عين قيمة العدد الحقيقي lpha بحيث يكون (5

 $\left\|-\overrightarrow{AM}+2\overrightarrow{BM}-3\overrightarrow{DM}
ight\|\leq 2\left\|\overrightarrow{BM}-\overrightarrow{CM}
ight\|$ ب/عين (E) مجموعة النقط M من المستوي حيث: (Γ) و (Γ) .

التمرين الثالث (04.5 نقاط):

- $(t-6)(t^2+1)$ من أجل كل عدد حقيقي t وكل عدد طبيعي n ، أنشر وبسط العبارة (1 t-6) من أجل كل عدد حقيقي t وكل عدد طبيعي t على t ثم أدرس حسب قيم t بواقي قسمة t على t
- $c=\overline{13154}$ و $b=\overline{125}$ ، $a=\overline{102}$: كمايلي b كمايلي $b=\overline{125}$ ، $a=\overline{102}$ و b ، a (2 b ، a (2 b ، a) علما أنّ : a imes b = c جد قيمة العدد a imes b = c بر أكتب كلا من a ، a و a في النظام العشري
 - 38x-53y=15......(1) نعتبر في \mathbb{Z}^2 المعادلة: (x;y) حلّا للمعادلة (1) فإنّ 13 فإنّ 3 بيّن أنّه إذا كانت الثنائية 3 حلّا للمعادلة 3 حلّا للمعادلة 3 بـ/ استنتج حلول المعادلة 3
 - نعتبر الآن x و y عددان طبيعيّان ونسمي d قاسمهما المشترك الأكبر (4

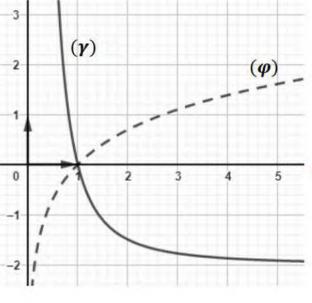
d عين القيم الممكنة لـ أ

d=15 بر جد كل الثنائيات (x;y) بحيث يكون

التمرين الرابع (07 نقاط):

المزء الأولى:

 $]0;+\infty[$ و $(oldsymbol{arphi})$ التمثيلان البيانيان للدالتين المعرفتين على و (γ)


المعلم يا المعلم و
$$x\mapsto lnx$$
 و $x\mapsto 2(rac{1}{x^2}-1)$ على الترتيب في المستوى المنسوب إلى المعلم المتعامد والمتجانس $(0;ec{t};ec{f})$

(γ) و (ϕ) يتقاطعان في النقطة ذات الفاصلة 1 كما هو موضح في الشكل المقابل:

$$.g(x)=rac{2}{x^2}-lnx-2$$
 الدالة المعرفة على المجال g ; $+\infty$ الدالة المعرفة على المجال g

،]
$$oldsymbol{0}$$
; + ∞ [على] ϕ بالنسبة إلى ($oldsymbol{\phi}$) على γ

g(x) ثم استنتج حسب قیم x إشارة

الزء الثاني:

 $f(x)=rac{2x^2+x-lnx+1}{x}$ نعتبر الدالة f المعرفة على f على f0; f1; f2; f3; f4. نعتبر الدالة f4 المياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس f4. f5. f6.

ا أحسب: $\displaystyle \lim_{x \to +\infty} f(x)$ و $\displaystyle \lim_{x \to +\infty} f(x)$. فسر النتائج هندسيا

$$.f'(x)=rac{g\left(rac{1}{x}
ight)}{x^2}:]0;+\infty$$
ن من أجل كل x من أجل كل (2

ب/عين دون حساب: $\lim_{h \to 0} \frac{4-f(1+h)}{h}$ ، ثم فسر النتيجة هندسيا . ج/ أدرس اتجاه تغيّر الدالة f ثم شكل جدول تغيراتها.

ا أرامسب $\lim_{x \to +\infty} [f(x)-2x]$ ، ماذا تستنتج (3

y=2x+1 أدرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم (Δ) ذو المعادلة

 (C_f) و (Δ) أرسم كلا من (4)

$$U_n=\int_{e^n}^{e^{n+1}}\!\!ig(f(x)-(2x+1)ig)dx:$$
 n نضع من أجل كل عدد طبيعي $u_n:$ u نضع من أجل كل عدد طبيعي u بدلالة u ثم استنتج طبيعة المتتالية u

ب/لتكن A مساحة حير المستوي المحدد بالمنحني (\mathcal{C}_f) والمستقيم وبالمستقيمين

 $A = ({\it U}_0 - {\it U}_1) \, ua$: تحقق من أنّ $x = e^2$ و x = 1 اللذين معادلتاهما

$$h(x)=x^2(1+\ln x)-3x+2$$
 نعتبر الدالة h المعرفة على المجال $+\infty$ بالعلاقة و $+\infty$ بالعلاقة و $+\infty$ المعرفة على المجال $+\infty$ بالعلاقة والمعرفة على المجال $+\infty$ بالمعرفة على المجال $+\infty$ بالعلاقة والمعرفة على المعرفة على المجال $+\infty$ بالعلاقة والمعرفة على المجال $+\infty$ بالمعرفة على المجال $+\infty$ بالمعرفة على المعرفة على المعرفة

$$h(x)\geq 0$$
 ثبت أنه من أجل كل x من المجال 1 من المجال 1 و فان: 1 1 فان: 1 1 أثبت أنه من أجل كل 1 من المجال 1 من المجال 1 فان: 1 و فان: 1 من المجال 1 ثم استنتج أن 1 فان: 1 من المجال 1 ثم استنتج أن 1 أثبت أنه من أجل كل 1 من المجال 1 أثبت أنه من أجل كل 1 أثبت أنه من أبد أنه أنه كل أنه أنه كل أنه

انهى الموضوع الأول

التمرين الرابع (07 نقاط)	العلامة	التمرين الاول(04 نقاط)	العلامة
التمرين الرابع (07) نقاط) (φ) تحديد وضعية (γ) بالنسبة إلى (φ) $g(x)$ تحديد وضعية $g(x)$ بالنسبة إلى $f'(x)$ اشارة f عند f عند f عند f التفسير (1) $f'(x) = \frac{g(\frac{1}{x})}{x^2}$: D_f من أجل كل f من أجل كل $f'(x)$ (2) $\lim_{h \to 0} \frac{4 - f(1 + h)}{h} = -f'(1) = 0$ بالتفسير بالدالة f :	0.5 0.25 0.25+0.25 0.25 0.5 0.25 0.5	أ) بين ان المتالية (v_n) هندسية يطلب تعيين اساسها. n بدلالة n ثم عبارة u_n بدلالة n بدلالة n عين n عين n عين n (أ) عين n	
$m{f}$: الدالة * جدول تغيرات الدالة	0.25	$n \rightarrow +\infty$	0.25+0.2
$\displaystyle \lim_{x o +\infty} [f(x) - 2x]$ الاستنتاج (3	0.5 0.25	التمرين الثاني(04 نقاط)	لعلامة
(Δ) بالنسبة لا (C_f) بالم كلامن (D_n) بدلالة (D_n) بالمتحقق من أنّ بالمتحتود (D_n) با	0.5 0.25+0.25 0.25+0.5 0.25 0.5 0.25	(E) المعادلة (E) تكافى (E) المعادلة (E) تكافى (E) المعادلة (E) المعادلة (E) المعادلة (E) المعادلة (E) المعادلة (E) المعادلة المع	
		المترين الثالث(05 نقاط) 1) نشروتبسيط العبارة : a_{n} دراسة حسب قيم a_{n} بواقي قسمة a_{n} على a_{n} (2) 1) أرايجاد قيمة العدد a_{n} في النظام العشري a_{n} بركتابة كلا من a_{n} في النظام العشري (3) 1) أرتبيين أنّه إذا كانت الثنائية a_{n} حلّا للمعادلة a_{n} فإنّ a_{n} حلّا للمعادلة a_{n}	0.25 0.5 0.5 0.5 0.5
		ب/ استنتاج حلول المعادلة (1) براستنتاج حلول المعادلة (1) (4) (4) الرعين القيم الممكنة لا $(x;y)$ بحيث يكون $(x;y)$ بحيث يكون حساب احتمال كي يكون مجموع رقمي القريصتين (5) المسحوبتين من بواقي قسمة (3) على (3)	0.5 0.5 0.75 0.5

التصحيح المفضل للموضوع الاؤل

تصحيح التمرين الأول:

ا المتالية (v_n) هندسية يطلب تعيين اساسها. (أ v_n) المتالية الماسها.

$$v_{n+1} = \frac{1}{6}v_n$$

أي (v_n) هندسية أساسها

$$u_n = rac{1}{10} \Big(rac{1}{6}\Big)^{n-1} + rac{2}{5}$$
: n بدلالة $v_n = rac{1}{10} \Big(rac{1}{6}\Big)^{n-1}$ بركانة $v_n = rac{1}{10} \left(rac{1}{6}\Big)^{n-1}$ بركانة $v_n = rac{1}{10} \left(rac{1}{6}\Big)^{n-1}$

 $a_1 = \frac{1}{2} \text{ (i (2)}$

ب) إكمال الشجرة

$$r_1 = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{4}{6} = \frac{7}{12}$$

$$r_n=-rac{1}{6}a_n+rac{2}{3}$$
: تبيين أنّ (ج

لدينا:

$$R_n = (R_n \cap A_n) \cup (R_n \cap \overline{A_n})$$

$$r_n = \frac{1}{2}a_n + \frac{4}{6}(1 - a_n) = -\frac{1}{6}a_n + \frac{2}{3}$$
 :

 $n \geq 1$ د) تبيين أنّه من أجل كل $n \geq 1$:

$$A_{n+1} = (A_n \cap R_n) \cup (\overline{A_n} \cap \overline{R_n})$$

A من أجل الرمية (n+1) بالنرد

nيلعب الرمية n ويتحصل على اللون الأحمر n أو يلعب الرمية

 $\overline{R_n}$ بالنرد B ويتحصل على اللون الأبيض

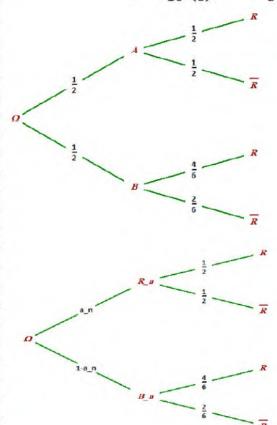
$$A_{n+1} = (A_n \cap R_n) \cup (\overline{A_n} \cap \overline{R_n}) : \emptyset$$

$$a_{n+1} = \frac{1}{4}a_n + \frac{1}{2}$$
: $n \geq 1$ کل (ه) استنتاج أنّه من أجل كل

$$A_{n+1} = (A_n \cap R_n) \cup (\overline{A_n} \cap \overline{R_n})$$
 اي:

$$a_{n+1} = P(A_{n+1}) = \frac{1}{2}a_n + \frac{2}{6}(1 - a_n) = \frac{1}{6}a_n + \frac{1}{3}$$

 $m{n}$ عبارة $m{a}_n$ بدلالة


$$a_n = u_n = rac{1}{10} \Big(rac{1}{6}\Big)^{n-1} + rac{2}{5}$$
 بما أن: $u_{n+1} = rac{1}{6} u_n + rac{1}{3}$ بما أن:

 $: \displaystyle \lim_{n o +\infty} r_n$ و) استنتاج عبارة r_n بدلالة n ثمّ

$$r_n = -rac{1}{6} \left(rac{1}{10} \left(rac{1}{6}
ight)^{n-1} + rac{2}{5}
ight) + rac{2}{3}$$
: لدينا $r_n = -rac{1}{6} a_n + rac{2}{3}$ اي $r_n = -rac{1}{6} a_n + rac{2}{3}$ الدينا $r_n = -rac{1}{6} a_n + rac{2}{3}$

$$r_n = -rac{1}{10} \left(rac{1}{6}
ight)^n + rac{3}{5}$$
 ومنه

$$\lim_{n \to +\infty} r_n = \lim_{n \to +\infty} \left[= -\frac{1}{10} \left(\frac{1}{6} \right)^n + \frac{3}{5} \right] = \frac{3}{5} \quad \checkmark$$

تصحيح التمرين الثاني:

: لدينا
$$(\overline{z}+1)$$
 تكافئ $(\overline{z}+1)$ تكافئ $(\overline{z}+1)$ تكافئ $(\overline{z}+1)$ تكافئ $(\overline{z}+1)$ تكافئ $(\overline{z}+1)$ تكافئ $(\overline{z}+1)$

 \cdot (E) ي $^{\circ}$ المعادلة $^{\circ}$

$$(\overline{z}+1)(\overline{z}^2-4\overline{z}+7)=0$$
نکافئ (E)

$$(\overline{z+1})(\overline{z^2-4z+7})=0$$
 يكافئ $(z+1)(z^2-4z+7)=0$ يكافئ

$$arDelta=-12=\left(2\sqrt{3}i
ight)^2$$
 ، $egin{cases} z=-1 \ z^2-4z+7=0 \end{cases}$ يكافئ

$$z_2=2+\sqrt{3}i$$
 و $z_1=2-\sqrt{3}i$

$$extbf{\emph{S}} = \left\{-1; 2 - \sqrt{3} i; 2 + \sqrt{3} i
ight\}$$
: ومنه

اُ/تعيين قيم العدد الطبيعي n حتى يكون العدد المركب $(Z_R-Z_A)^n$ عددا حقيقيا سالبا: لدينا(2

$$(z_B - z_A)^n = (2 + \sqrt{3}i + 1)^n = (3 + \sqrt{3}i)^n$$

$$(z_B - z_A)^n = (2\sqrt{3})^n e^{irac{n\pi}{6}}$$
ومنه

$$rac{n\pi}{6}=\pi+2k\pi$$
 ومنه $arg(\,z_B-z_A)^n=\pi+2k\pi$ ومنه $(z_B-z_A)^n$

$$n=12k+6$$
 ; $k\in\mathbb{N}$ إذن

ب/تعيين طبيعة المثلث ABC

$$AC = |z_C - z_A| = |3 - i\sqrt{3}| = 2\sqrt{3}AB = |z_B - z_A| = |3 + i\sqrt{3}| = 2\sqrt{3}$$

$$BC = |z_C - z_B| = \left| -2i\sqrt{3} \right| = 2\sqrt{3}$$

بما ان :
$$AB = AC = BC$$
 فإن المثلث $AB = AC = BC$

 $\frac{z_A-z_C}{z_D-z_C}$ على الشكل الأسي: $\frac{z_A-z_C}{z_D-z_C}$

$$\frac{z_A - z_C}{z_D - z_C} = \frac{-1 - 2 + i\sqrt{3}}{3 - 2 + i\sqrt{3}} = \frac{-3 + i\sqrt{3}}{1 + i\sqrt{3}} = \sqrt{3}e^{i\frac{\pi}{2}}$$

استنتاج طبيعة التحويل الذي يحولA إلى Dوعناصره المميزة:

$$z_A-z_C=\sqrt{3}e^{irac{\pi}{2}}(z_D-z_C)$$
معناه $rac{z_A-z_C}{z_D-z_C}=\sqrt{3}e^{irac{\pi}{2}}$

 $rac{\pi}{2}$ معناه النقطة C معناه النقطة C بالتشابه المباشر الذي مركزه النقطة النقطة معناه النقطة معناه النقطة المسابه المباشر الذي مركزه النقطة المساب

ب/تعيين مركز ونصف قطر الدائرة المحيطة بالمثلث ACD

$$egin{align*} \left| rac{z_A - z_C}{z_D - z_C}
ight| = \sqrt{3} \ \left(\overrightarrow{CD}; \overrightarrow{CA}
ight) = rac{\pi}{2} + 2k\pi; k \in \mathbb{Z} \end{cases}$$
مفناه معناه $rac{z_A - z_C}{z_D - z_C} = \sqrt{3} \ e^{irac{\pi}{2}}$ ندينا:

اذن المثلثACD قائم في C ومنه مركز الدائرة المحيطة بالمثلثACD هو النقطة I منتصف الوتر

$$z_{I}=rac{z_{A}+z_{D}}{2}=rac{3}{2}-irac{1}{2}$$
 لاحقتها

ي تعيين قيس للزاوية الموجهة $(\overrightarrow{m{u}}; \overrightarrow{AB})$:

$$(\overrightarrow{u};\overrightarrow{AB})=arg(\,z_B-z_A)=rac{\pi}{6}+2k\pi\,\,;k\in\mathbb{Z}$$
لدينا

استنتاج (Γ) مجموعة النقط M(z) حيث: M(z)

 $\overrightarrow{AM}=k\cdot\overrightarrow{AB}$ معناه $z-z_A=k(z_B-z_A)$ معناه $z+1=2\sqrt{3}ke^{irac{\pi}{6}}$

ومنه :من أجل k يمسح المجال $[0;+\infty[$ المجموعة $[\Gamma]$ هي نصف مستقيم مبدؤه النقطة $[0;+\infty[$

$$2\sqrt{3}e^{irac{\pi}{6}}=3+i\sqrt{3}$$
: لاحقته \overrightarrow{AB}

$-\overrightarrow{CA} + 2\overrightarrow{CB} + \alpha\overrightarrow{CD} = \overrightarrow{0}$ عين قيمة العدد α حيث α

 $\{(A;-1),(B;2),(D;lpha)\}$ هي مرجح الجملة C معناه النقطة معناه النقطة $-\overrightarrow{CA}+2\overrightarrow{CB}+lpha\overrightarrow{CD}=\overrightarrow{0}$

$$lpha = -3$$
 ومنه $x_C = rac{1+4+3lpha}{1+lpha} \ -\sqrt{3} = rac{0+2\sqrt{3}+0\cdotlpha}{1+lpha}$ يكافئ $y_C = rac{-x_A+2x_B+lpha x_D}{-1+2+lpha} \ y_C = rac{-y_A+2y_B+lpha y_D}{-1+2+lpha}$

ين (E) مجموعة النقط M من المستوى حيث: */

$$(*)\dots \|-\overrightarrow{AM}+2\overrightarrow{BM}-3\overrightarrow{DM}\| \leq 2\|\overrightarrow{BM}-\overrightarrow{CM}\|$$

$$\left\| \overrightarrow{MA} - 2\overrightarrow{MB} + 3\overrightarrow{MD} \right\| \leq 2 \left\| \overrightarrow{BM} + \overrightarrow{MC} \right\|_{\dot{E}^{(*)}}$$

$$\left\|-\left(-\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MD}
ight)
ight\|\leq 2\left\|\overrightarrow{BC}
ight\|_{\overset{\circ}{U}}^{(*)}$$

$$\mathit{CM} \leq \mathit{BC}$$
 نکافئ $\left\| (-1+2-3) \overrightarrow{\mathit{CM}} \right\| \leq 2\mathit{BC}$ نکافئ (*)

 $BC=2\sqrt{3}$ ومنه مجموعة النقط (E) هي قرص مركزه النقطة ونصف قطره هو

ج*/ استنتاج مجموعة نقط تقاطع القرص(E)ونصف المستقيم (AB) لدينا القرص مجموعة نقط ونصف قطره ونصف والمستقيم المستقيم القرص المستقيم القرص المستقيم المستقيم القرص المستقيم ا

$$(E)$$
 معناه A تنتبی إلی القرص $AC=2\sqrt{3}$ هذاه $BC=2\sqrt{3}$

[AB] ومنه تقاطع القرص (E) ونصف المستقيم (AB) هو القطعة المستقيمة

تصحيح التمرين الثالث:

$$(t-6)(t^2+1)=t^3-6t^2+t-6$$
 نشروتبسيط العبارة: (1) نشروتبسيط العبارة (1)

7دراسة حسب قيم n بواقي قسمة

$$3^6\equiv 1$$
[7]، $3^5\equiv 5$ [7]، $3^4\equiv 4$ [7]، $3^3\equiv 6$ [7]، $3^2\equiv 2$ [7]، $3^1\equiv 3$ [7]، $3^0\equiv 1$ [7]: لدينا : $3^{6eta+3}\equiv 6$ [7]، $3^{6eta+2}\equiv 2$ [7]، $3^{6eta+1}\equiv 3$ [7]، $3^{6eta}\equiv 1$ [7]: $oldsymbol{eta}\in\mathbb{N}$ وعليه من أجل

$$3^{6\beta+5} \equiv 5[7], \quad 3^{6\beta+4} \equiv 4[7]$$

p أ/إيجاد قيمة العدد (2

$$a=2 imes p^0+0 imes p^1+p^2=2+p^2:$$
دينا $b=5 imes p^0+2 imes p^1+p^2=5+2p+p^2$

$$c = 4 \times p^0 + 5 \times p^2 + p^2 + 3 \times p^3 + p^4 = 4 + 5p + p^2 + 3p^3 + p^4$$

$$(2+p^2)(5+2p+p^2)=4+5p+p^2+3p^3+p^4$$
 معناه $a imes b=c$

$$p=6$$
 یکافئ $(p-6)(p^2+1)=0$: ایکافئ $p^3-6p^2+p-6=0$ ومنه

```
ب/كتابة كلامن oldsymbol{a} و oldsymbol{c} في النظام العشري oldsymbol{b}
c = 4 + 5.6 + 6^2 + 3.6^3 + 6^4 = 2014, b = 5 + 2.6 + 6^2 = 53, a = 2 + 6^2 = 38
                                                                  x \equiv 52[53] اً/ تبيين أنّه إذا كانت الثنائية (x;y) حلّا للمعادلة (1) فإنّ (3
                                                      38x \equiv 15[53] ئى 38x = 15 + 53y يكافئ 38x = 15 + 53y ئى الدينا :
                      x \equiv 52[53] وعليه x \equiv -1[53] ایx \equiv -1[53] وعليه x \equiv -15[53] وعليه x \equiv -15[53]
                                                                                                                                                                         ب/استنتاج حلول المعادلة (1)
                                                  y=38k+37 لدينا : x=53k+52 حيث k\in\mathbb{Z} حيث x=53k+52
        وبالتالي مجموعة حلول المعادلة (1) هي الثنائيات (x;y) من الشكل (38k+52;38k+37) حيث
                                                                                                                                                                                                                          k \in \mathbb{Z}
                                                                                                                                                            d أ عين القيم المكنة لـ d
                        d \in \{1;3;5;15\}: لدينا d \ / \ 15 وبالتاليd \ / \ 23x - 53y اذن d \ / \ y ورالتاليd \ / \ x لدينا
                                                                                                               d=15 بحيث يكون (x;y) بحيث يكون برايجاد كل الثنائيات
                                                                                         نضع x'=15 و y'=15 و y=15 نضع y=15
                                                         38x' - 53y' = 1نحصل على 38 \times 15x' - 53 	imes 15y' = 15 أي
                                       38x'-53y'=1لدينا الثنائية (7;5) حلا خاصاً للمعادلة ومنه (7;5)=1
                                                                                                                                                        38(x'-7) = 53(y'-5)
   53 \, / \, (x'-7) اذن حسب مبرهنة "غوص" PGCD(38;53) = 1 اذن حسب مبرهنة "غوص" الدينا الدينا
                   y'=38lpha+5 وبالتعويض نجدlpha'=53lpha+7 ومنهlpha'=53lpha وبالتعويض نجد
           y=15(38lpha+5)=570lpha+75 وبالتالي: x=15(53lpha+7)=795lpha+105 وبالتالي:
                                                                                                                                                                                                             \alpha \in \mathbb{N} حىث
                              7 على 3^n على على يكون مجموع رقمي القريصتين المسحوبتين من بواقى قسمة 3^n على 3^n
```

عدد طرق السحب هو: $45=C_{10}^2=45$ وعدد الحالات الملائمة: 12 وهي

 $\{(0;1),(0;2),(0;3),(0;4),(0;5),(0;6),(1;2),(1;3),(1;4),(1;5),(2;3),(2;4)\}$

$$\frac{12}{45} = \frac{4}{15}$$
إذن الاحتمال المطلوب هو:

تصحيح التمرين الرابع:

 $[0;+\infty[$ على $(oldsymbol{arphi})$ بالنسبة إلى $(oldsymbol{arphi})$ على $[0;+\infty[$

 $(oldsymbol{arphi})$ على المجال [0] [0] فوق $[oldsymbol{arphi}]$ ، وعلى المجال [0] تحت

g(x) اشارة -

x	0	1	+∞
g(x)	+	0	_

<u> الزء الثاني:</u>

$+\infty$ عند 0 و +

$$\lim_{x o +\infty}f(x)=+\infty$$
 ; $\lim_{x o 0}f(x)=+\infty$ التفسير: المستقيم ذو المعادلة $x=0$ مقارب لـ

و دالتها
$$f'(x)=rac{g(rac{1}{x})}{x^2}$$
: D_f من D_f من D_f من D_f الدالة D_f الدالة D_f الدالة D_f عيث:

$$f'(x) = \frac{x\left(4x - \frac{1}{x} + 1\right) - 2x^2 - x + \ln x - 1}{x^2} = \frac{2x^2 - 2 + \ln x}{x^2} = \frac{g\left(\frac{1}{x}\right)}{x^2}$$

$$\lim_{h \to 0} \frac{4 - f(1 + h)}{h} = -f'(1) = 0$$

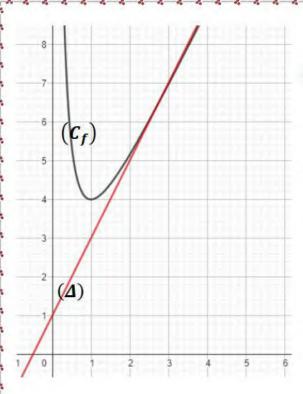
التفسير: (C_f) يقبل مماسا عند 1 يوازى حامل محور الفواصل

 D_f من X من أجل كل جراستنتاج اتجاه تغير الدالة

: لدينا $g(rac{1}{\gamma})$ وهي من إشارة $g(rac{1}{\gamma})$ وهي

 $[1;+\infty[$ الدالة f متناقصة تماما على المجال المجال [0;1] ومتز ايدة تماما على المجال

: fحدول تغيرات الدالة *


x	0		1		+∞
f'(x)		-	0	+	
f(x)	+∞ —	\rightarrow	4		×+«

$\lim_{x\to +\infty} [f(x)-\overline{2x}]$ أ/حساب (3

جوار
$$(C_f)$$
 مقارب مائل لـ $y=2x+1$ بمقارب مائل لـ $\lim_{x o +\infty}[f(x)-2x]=1$

(Δ) بالنسبة ل (C_f) بالنسبة لـ (Δ) :

الدينا
$$[f(x)-(2x+1)]=rac{1-lnx}{x}$$
 ومنه إشارة الفرق هي من إشارة $[f(x)-(2x+1)]=rac{1-lnx}{x}$ إذن: $[f(x)-(2x+1)]=0$ على $[f(x)-(2x+1)]=0$ وهي: النقطة ذات $[f(x)-(2x+1)]=0$ يقطع $[f(x)-(2x+1)]=0$ إذن: $[f(x)-(2x+1)]=0$ يقطع $[f(x)-(2x+1)]=0$ الإحداثيات $[f(x)-(2x+1)]=0$ ومنه إشارة الفرق المحداثيات $[f(x)-(2x+1)]=0$ ومنه إشارة الفرق المحداثيات $[f(x)-(2x+1)]=0$ ومنه إشارة الفرق المحداثيات ال

$$(C_f)$$
و (Δ) رسم کلامن (4

$$U_n=\int_{e^n}^{e^{n+1}}ig(f(x)-(2x+1)ig)dx:n$$
 من أجل كل عدد طبيعي n ناجل كل عدد طبيعي U_n بدلالة n ثم استنتاج طبيعة المتتالية U_n

$$U_n = \int_{e^n}^{e^{n+1}} (f(x) - (2x+1)) dx = \int_{e^n}^{e^{n+1}} \frac{1 - \ln x}{x} dx$$

$$e^{n+1} \qquad e^{n+1}$$

$$= \int_{e^n}^{e^{n+1}} \frac{1}{x} dx - \int_{e^n}^{e^{n+1}} \frac{\ln x}{x} dx = -n + \frac{1}{2}$$

$$U_0=rac{1}{2}$$
 وحدها الأول $r=-1$ وحدها الأول (U_n) ومنه

$$A = (U_0 - U_1) ua$$
 ي/ التحقق من أنّ:

لدينا: "باستعمال علاقة شال"

$$A = \int_{1}^{e} \left(f(x) - (2x+1) \right) dx - \int_{e}^{e^{2}} \left(f(x) - (2x+1) \right) dx = (U_{0} - U_{1}) ua$$

$$\frac{h(x)}{x} = f\left(\frac{1}{x}\right) - 4$$
 (6)

$$f\left(\frac{1}{x}\right)-4=2 imes rac{1}{x}+1+rac{1-lnrac{1}{x}}{rac{1}{x}}-4=rac{x^2(1+lnx)-3x+2}{x}=rac{h(x)}{x}$$
: لدينا

 $h(x) \ge 0$ استنتاج أن

$$f\left(rac{1}{x}
ight)-4\geq 0$$
 لدينا : من جدول التغيرات $f\left(rac{1}{x}
ight)=f(x)\geq f(x)$ تكافئ $f(x)\geq f(x)\geq 0$ ومنه $f\left(rac{1}{x}
ight)\geq 0$ أي $h(x)\geq 0$

h(x) = 0 يحيث يكون x تعيين x

$$x=1$$
 تكافئ $\frac{1}{x}=1$ نكافئ $f\left(rac{1}{x}
ight)=f(1)$ ئي أي $f\left(rac{1}{x}
ight)=4=0$ ومنه أي كافئ $h(x)=0$

انتهى بحمد الله وبفضله تصحيح الموضوع الأول من البكالوريا التجريبي دورة 2024 مادة الرياضيات للأقسام النهاية شعبة الرياضيات

لاتنسونا من صالح دعامكم