الجمهورية الجزائرية الديموقراطية الشعبية

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي التجريبي

دورة: 2024

الديوان الوطني للامتحانات والمسابقات

الشعبة: تقني رياضي

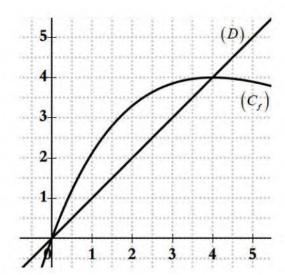
اختبار في مادة: الرياضيات

المدة: 04 سا و 30 د

اعداد الأستاذ عبد الحميد بوقطوف

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول


التمرين الأول: (05 نقاط)

 $f(x) = xe^{1-\frac{1}{4}x}$ ب: $[0;+\infty]$ بالدالة العددية المعرفة على الدالة العددية المعرفة على

y=x المستقيم ذو المعادلة $\left(C_{f}
ight)$ تمثيلها البياني في المستوي المنسوب إلى معلم متعامد متجانس $\left(C_{f}
ight)$

$$u_{n+1}=f\left(u_{n}
ight)$$
 ، n عدد طبيعي ، $u_{0}=1$ ومن أجل كل عدد طبيعي ، المتتالية العددية المعرفة بحدها الأول $u_{0}=1$

$$f(x) \in [0;4]$$
 فإن $[0;4]$ فإن عدد حقيقي x من المجال المجال أين أنه من أجل كل عدد حقيقي x

- 2) أ- أعد رسم الشكل المقابل ثم مثل على حامل محور الفواصل الحدود u_1 ، u_2 ، u_3 و u_2 ، u_1 ، u_0 الحدود الإنشاء،
 - ب- ضع تخمينا حول اتجاه تغير المتتالية (u_n) وتقاربها.
- $0 < u_n \le 4$ ، n عدد طبیعی أنه من أجل كل عدد طبيعي أنه من أجل (3
 - $\frac{u_{n+1}}{1} \ge 1$ ، n عدد طبیعی n أجل كل عدد طبيعي
 - ثم استنتج اتجاه تغير المتتالية (س)
 - ج- استنتج أن المتتالية (u_n) متقارية.

$$S_n = u_0 + u_1 + ... + u_{n-1}$$
 ، معدوم غير معدوم عدد طبيعي غير معدوم (4

$$u_n = e^{n-\frac{1}{4}S_n}$$
 ، n معدوم غير معدوم كل عدد طبيعي غير معدوم

$$\lim_{n\to+\infty}\frac{S_n}{n}=4 \text{ i.i.}$$

التمرين الثاني: (04 نقاط)

- 1) أ- أدرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 5^n على 11
 - ب- استنتج باقي القسمة الإقليدية للعدد 52024 على 11

$$y$$
 و x نعتبر المعادلة $5x-3y=11...(E)$ نعتبر المعادلة (2

$$(E)$$
 أ- تحقق أن الثنائية $(1;-2)$ حل للمعادلة

$$(E)$$
 بـ استنتج حلول المعادلة

$$d = PGCD(x; y)$$
 و (E) حل للمعادلة ($x; y$) الثنائية

d عين القيم الممكنة ل

$$n = 3 \times 16^{2024} + 1$$
 نضع: (4

$$11$$
 على القسمة الإقليدية للعدد n على الماء الماء الماء الماء القسمة الإقليدية الماء ا

$$PGCD(3\times16^{2024}+1;5\times16^{2024}+1)$$
 ب- أوجد

التمرين الثالث: (04 نقاط)

يحتوي وعاء غير شفاف على 9 كريات متماثلة لا نفرق بينها باللمس، منها كريتين تحملان الرقم 1 وأربع كريات تحمل الرقم 2 وكرية واحدة تحمل الرقم 3 وكريتين تحملان الرقم 4

نسحب عشوائيا من هذا الوعاء كريتين على التوالي دون إرجاع.

نعتبر الحوادث A ، A و C التالية:

الحصول على كريتين مجموع رقميهما يساوي $^{-}$ 5 الحصول على $^{-}$

"الحصول على كريتين جداء رقميهما فردي B

الحصول على كريتين رقميهما أوليان فيما بينهما: C

$$p(B)$$
 و $p(A)$ اً- أحسب (1

$$p(C) = \frac{7}{12}$$
 بـ بين أن

2) نعتبر المتغير العشوائي X الذي يرفق بكل عملية سحب لكريتين، القاسم المشترك الأكبر للرقمين المسجلين عليهما.

$$\{1;2;4\}$$
 : هي: $\{1;2;4\}$

E(X) ب- عين قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي

$$p(|X-2024|<2024)$$
 أحسب (3

التمرين الرابع: (07 نقاط)

$$g(x)=2x^2+\ln x$$
 بالدالة العددية المعرفة على $g(x)=0$;+∞ الدالة العددية المعرفة على $g(x)=0$

$$\lim_{x\to +\infty} g(x)$$
 و $\lim_{x\to 0} g(x)$ أ- أحسب (1

ب- أدرس اتجاه تغير الدالة g ثم شكل جدول تغيراتها.

$$0.54 < \alpha < 0.55$$
 ميث أن المعادلة $g(x) = 0$ تقبل حلا وحيدا α

$$]0;+\infty[$$
 على $g(x)$ على $]0;+\infty[$

$$f(x) = 2x - \frac{1 + \ln x}{x}$$
 بـ: $g(x) = 2x - \frac{1 + \ln x}{x}$ بـ: $g(x) = 2x - \frac{1 + \ln x}{x}$ بالدالة العددية المعرفة على

(2cm وحدة الطول (C_f) معلم متعامد ومتجانس ($C_i; \vec{j}$) وحدة الطول (C_f)

أ- أحسب $\lim_{x \to \infty} f(x)$ ثم فسر النتيجة بيانيا.

$$\lim_{x\to +\infty} f(x)$$
 بـ– أحسب

y=2x معادلته Δ معادلته $+\infty$ عند عند $+\infty$ معادلته $+\infty$ معادلته $+\infty$ معادلته $+\infty$

 (Δ) بالنسبة للمستقيم النسبي للمنحنى (C_f) بالنسبة للمستقيم

 $f'(x) = \frac{g(x)}{x^2}$ ،]0;+∞[من أجل كل عدد حقيقي x من أجل كل عدد (3

ب- استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

$$f(\alpha)$$
 بین أن $f(\alpha) = \frac{4\alpha^2 - 1}{\alpha}$ ثم أعط حصرا لـ (4

 $\frac{1}{e}$ الماتي فاصلتها عند النقطة التي فاصلتها (C_f) مماس المنحنى (T) معادلة ل

 $\left(C_{f}\right)$ و $\left(T\right)$ ، (Δ) و (6

 $]0;+\infty[$ على f الدالة أصلية f للدالة أوجد دالة أصلية أ

x=1 و $x=rac{1}{e}$ وحامل محور الفواصل والمستقيمين x=1 وحامل محور الفواصل والمستقيمين x=1

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04,5 نقاط)

- $z^2-2\sqrt{3}\,z+4=0$:التالية: z المعادلة (E) المعادلة (E) المعادلة (z) المعادلة (z) على المعادلة (z) المعادلة (z
- C في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس $(O; \vec{u}, \vec{v})$ ، نعتبر النقط B، A و C لواحقها (2) في المستوي المركب المنسوب إلى المعلم المتعامد المتعامد المتعامد $z_B = 4 + \sqrt{3} + i$ و $z_B = \sqrt{3} i$ ، $z_A = \sqrt{3} + i$

أ- أكتب Z_A و Z_B على الشكل الأسي.

$$\left(\frac{z_A}{2}\right)^6 + \left(\frac{z_A}{2}\right)^6 = -2 :$$
ب- بین أن:

اً أ- أثبت أن: $\frac{z_C-z_A}{z_B-z_A}=2e^{i\frac{\pi}{2}}$ ثم استنتج أن النقطة C هي صورة النقطة B بتحويل نقطي يطلب تعيين عناصره (3

المميزة.

ب- ما طبيعة المثلث ABC؟

ABC عين لاحقة النقطة I مركز الدائرة المحيطة بالمثلث

 $\arg\left(\overline{z}-2+i\right)=rac{\pi}{6}+2k\pi$ نتكن (E) مجموعة النقط M ذات اللاحقة z التي تختلف عن z التي تختلف عن (E) نتكن

(عدد صحیح k)

(E) أ- تحقق أن النقطة I تنتمي إلى المجموعة

(E) عين المجموعة

التمرين الثاني: (04,5 نقاط)

 $u_{n+1} = \ln\left(\frac{2}{3}e^{u_n} + 1\right)$ ، n يعدد طبيعي ، $u_0 = 2\ln 2$ ومن أجل كل عدد طبيعي (u_n)

 $u_n > \ln 3$ ، n عدد طبیعي (1

. متناقصة (u_n) أ- بين أنه من أجل كل عدد طبيعي n ، n هناقصة $e^{u_n} - e^{u_{n+1}} = \frac{1}{3} (e^{u_n} - 3)$ ، n متناقصة (2

ب- استنتج أن المتتالية (u_n) متقاربة.

 $v_{\scriptscriptstyle n}=e^{u_{\scriptscriptstyle n}}-3$: المتتالية العددية المعرفة على المتتالية العددية المعرفة على (3

أ- بين أن المتتالية $\left(v_{n}\right)$ هندسية أساسها $\frac{2}{3}$ يطلب تعيين حدها الأول.

 $u_n = \ln\left(3 + \left(\frac{2}{3}\right)^n\right)$ ، n عبر عن v_n عبر عن v_n ثم استنتج أنه من أجل كل عدد طبيعي v_n

 $\lim_{n\to+\infty} u_n$ جـ- أحسب

 $S_{n}=e^{u_{0}}+e^{u_{1}}+...+e^{u_{n}}$:حسب بدلالة n المجموع (4

التمرين الثالث: (04 نقاط)

- 7 على n أ- أدرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد n على n
 - 7 على 1445^{2024} على -1 استنتج باقي القسمة الإقليدية للعدد
 - عدد طبيعي يكتب $\overline{651\alpha}$ في النظام العشري. N

$$7$$
 عين α حتى يقبل العدد α -651 α عين α عين α

- 3) أ- أحسب القاسم المشترك الأكبر للعددين 4590 و 2025
- $34x \equiv 2[15]$: حين مجموعة قيم العدد الصحيح x التي تحقق:
- y و x و المعادلة x = 4590x + 2025 ذات المجهولين الصحيحين x
 - 4) ما هو رقم آحاد العدد 72024 المكتوب في النظام العشري؟

التمرين الرابع: (07 نقاط)

- $g(x) = e^x x 1$ بالدالة العددية المعرفة على \mathbb{R} بالدالة العددية المعرفة على $g(x) = e^x x 1$ بعطى جدول تغيراتها كما هو موضح في الشكل المقابل:
 - g(0) إحسب (1
 - \mathbb{R} على g(x) على (2

$$\begin{array}{c|cccc}
x & -\infty & 0 & +\infty \\
g'(x) & - & \emptyset & + \\
g(x) & & & +\infty \\
\end{array}$$

- $f\left(x
 ight)=\left(x+2
 ight)e^{-x}+x-2$ بـ $\mathbb R$ بـ والدالة العددية المعرفة على $f\left(x
 ight)$ بـ الدالة البياني في المستوي المنسوب إلى معلم متعامد ومتجانس $\left(C_{f}
 ight)$
 - $\lim_{x\to+\infty} f(x)$ و $\lim_{x\to\infty} f(x)$ أحسب (1
- y=x-2 معادلته (Δ) معادلته $+\infty$ عند عند (C_f) معادلته -1 (2
 - (Δ) بالنسبة للمستقيم المنحنى بالنسبة للمستقيم (C_f)
 - $f'(x) = e^{-x}g(x)$ ، د حقیقی عدد حقیقی اب انه من أجل كل عدد حقیقی آ
 - . f وشكل جدول تغيراتها f
 - $\left(C_{f}
 ight)$ بين أن O هي نقطة انعطاف للمنحنى (4
 - $\left(C_{f}
 ight)$ و $\left(\Delta
 ight)$ و (5
 - -2 عدد حقیقی أكبر تماما من λ
- $x=\lambda$ و x=-2 ، (Δ) والمستقيمات (C_f) والمستقيمات المحدد بالمنحنى والمحدد بالمنحنى المحدد بالمنحنى
 - $A(\lambda) = e^2 (\lambda + 3)e^{-\lambda}$:أ- باستعمال المكاملة بالتجزئة، بين أن
 - $\lim_{\lambda \to \infty} A(\lambda)$ بـ- أحسب

انتهى الموضوع الثاني