الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

مديرية التربية لولاية تيارت امتحان بكالوريا تجريبي التعليم الثانوي

الشعبة: علوم تجريبية

المسدة : 03 سا و 30 د

ثانوية بوشارب الناصر سوقر

دورة: ماي 2023

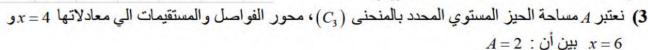
اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين :

الموضوع الأول

التمرين الأول: (04 نقط)

 (O, \vec{i}, \vec{j}) المستوي منسوب الى معلم متعامد ومتجانس


الشكل المقابل يمثل منحنى دالة f معرفة وقابلة للاشتقاق مرتين على \mathbb{R} وكذلك منحنى دالتها المشتقة f' والمشتقة الثانية f'.

 (C_2) , (C_1) انسب،مع التبرير، كل منحنى من المنحنبات (C_1) , (C_3) و (C_3) الى دالته.

2) بقراءة بياتية:

أ) عين معامل توجيه مماس المنحنى (C_2) عتد النقطة ذات القاصلة 4

 (C_1) عين احداثيات نقط انعطاف المنحنى (ب

التمرين الثاني: (04.5 نقاط)

. $u_{n+1} = \frac{5u_n - 4}{1 + u_n}$ عبر معدوم: $u_n = 5$ معرفة ب $u_1 = 5$ عبر معدوم: $u_n = 5$ المتتالية العددية (u_n) معرفة ب

- $u_n > 2$: ابین أنه من أجل كل عدد طبیعي غیر معدوم (1
- $v_n = \frac{3}{u_n 2}$: بالمتتالية العددية المعرفة من أجل كل عدد طبيعي غير معدوم n بـ: (2 v_n) المتتالية العددية المعرفة من أجل كل عدد طبيعي غير معدوم v_n) بين أن المتتالية v_n) حسابية يطلب تعيين أساسها وحدها الأول v_n) اكتب عبارة v_n بدلالة v_n ثم استنتج عبارة v_n بدلالة v_n) اكتب عبارة v_n بدلالة v_n
 - $\lim_{n\to\infty}u_n$ (3
 - $u_1 + 2u_2 + 3u_3 + \dots + nu_n = n^2 + 4n$: n معدوم غير معدوم غير عدد طبيعي غير عدد طبيعي غير (4

التمرين الثالث: (04.5 نقاط)

يراد عشوائيا تشكيل لجنة من بين اربع رجال $H_1 \, : \, H_2 \, : \, H_3 \, : \, H_$

ثلاث اعضاء رئيس ونائبان حيث للنائبان نفس المهام

نعتبر الحوادث: B ! A ! D و D حيث:

اللجنة من نفس الجنس B : النائبان من جنسين مختلفين B : اللجنة من نفس الجنس B : B

- $P(D) = \frac{17}{42} gP(C) = \frac{1}{12}$ i وبين ان $P(B) gP(C) = \frac{1}{42} gP(C) = \frac{1}{12}$ احسب (1)
 - 2) علما ان الرئيس رجل؛ ماهو احتمال ان يكون النائبان من نفس الجنس؟
- نعتبر المتغير العشوائي X الذي يرفق بكل لجنة عدد النائبات (أي النواب نساء) فيها. E(X) عين قانون احتمال X واحسب امله الرياضي E(X)
 - $P \lceil \ln(X+1) < 1 \rceil$ (\downarrow

التمرين الرابع: (07 نقاط)

- $g(x) = (2x+1)e^{2x} 1$: ب \mathbb{R} معرفة على g معرفة على الدالة العددية g
 - $\lim_{x \to -\infty} g(x) = \lim_{x \to +\infty} g(x)$ | Lim g(x) | Lim
 - (2) أ) ادرس اتجاه تغیر الدالة g و شكل جدول تغیر اتها ب) احسب g(0) استنتج اشارة g(x) على g(x)
- الدالة العددية f معرفة على \mathbb{R} ب \mathbb{R} ب \mathbb{R} الدالة العددية f معرفة على \mathbb{R} المستوي المنسوب $f(x) = x(1-e^{2x})+3$ ب $\|\vec{i}\| = \|\vec{j}\| = 1$ الدالة العددية f معلم متعامد ومتجانس $f(x) = \|\vec{i}\| = 1$ الدالة العددية f(x) = 1 العددية f(x) = 1
 - $\lim_{x\to\infty} f(x)$ و $\lim_{x\to\infty} f(x)$ احسب (1)
 - f أ) بين أنه من أجل كل عدد حقيقي f'(x) = -g(x) عدد حقيقي أ) بين أنه من أجل كل عدد حقيقي f'(x) = -g(x)
 - ب) استنتج اتجاه تغير الدالة f وشكل جدول تغبر اتها
 - $-\infty$ أ) بين أن المستقيم (Δ) ذو المعادلة y=x+3 مقارب للمنحنى أن المستقيم (Δ) بجوار (Δ) بجوار (Δ) أدرس وضعية المنحنى (Δ) بالنسبة للمستقيم (Δ)
- $\ln 2 < \alpha < 1$ محور الفواصل في نقطتين مختلفتين فاصلتاهما α حيث (C_f) يقطع حامل محور الفواصل في نقطتين مختلفتين فاصلتاهما $\alpha < 1$ عدد $\alpha < 1$ و $\alpha < 1$
 - (C_t) أنشئ (Δ) و المنحنى (5
- (Δ) عدد حقیقی، حیث: (C_3) نرمز بـ: $(A(\lambda))$ الی مساحة الحیز المستوی المحدد بالمنحنی (C_3) المستقیم ((C_3) عدد حقیقی، حیث: $(A(\lambda))$ بدلالة $(A(\lambda))$

انتهى الموضوع الأول

الموضوع الثابي

التمرين الاول: (04 نقاط)

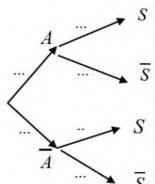
 $u_{n+1} = \frac{n+3+2nu_n}{3(n+1)}$ ي غير معدوم $\frac{n}{2}$ عدد الأول $u_1 = \frac{1}{3}$ و من أجل كل عدد طبيعي غير معدوم $u_2 = \frac{1}{3}$

- $u_n \le 1$: n بين أنه من أجل كل عدد طبيعي غير معدوم (1
 - بين ان المتتالية (u_n) متزايدة ثم استنتج انها متقاربة (2
- $v_n = n(1-u_n)$: لتكن $v_n = n(1-u_n)$ المتتالية العددية المعرفة من أجل كل عدد طبيعي غير معدوم $v_n = n(1-u_n)$

 v_1 أ) بين أن المتتالية (v_n) هندسية أساسها $q=\frac{2}{3}$ احسب حدها الأول

n باکتب عبارة v_n بدلالة v_n ثم استنتج عبارة v_n بدلالة

- $\lim_{n\to+\infty}u_n$ (4
- $S_n = u_1 + 2u_2 + 3u_3 + \dots + nu_n$ حيث: $S_n = u_1 + 2u_2 + 3u_3 + \dots + nu_n$ احسب بدلالة $S_n = u_1 + 2u_2 + 3u_3 + \dots + nu_n$


التمرين الثاني : (05 نقاط) (عطى كل القيم بالتقريب الى 10^{-3}

قبيل امتحان البكالوريا قدمت مكتبة تخفيض في سعر نوعين من المراجع الخاصة بالرياضيات احدهما خاص بحلول مواضيع البكالوريات السابقة والاخر ملخص دروس ومقترحات

نقرض ان كل طالب بكالوريا اشترى مرجع واحد

ونعتبر ان %20 من الطلبة اشتروا المرجع الخاص حلول البكالوريات السابقة بحيث %90 منهم اعجبوا بالمرجع و 82% من الطلبة الذين زاروا المكتبة اعجبوا بالمرجع الذي اختاروه

فيما يلى نختار عشوانيا طالب بكالوريا و نعتبر الحادثتين: A: الطالب اشترى مرجع خاص بحلول مواضيع البكالوريات السابقة S: الطالب معجب بمرجعه الذي اختاره.

- $.P_{\overline{A}}(S) = 0.8$ اثبت أن (1
- 2) انقل وأكمل شجرة الاحتمالات المقابلة التي تنمذج الوضعية
- نختار عشوائیا طالب معجب باختیاره؛ ما احتمال ان یکون قد اشتری مرجع خاص بحلول مواضیع البکالوریات السابقة ؟

4) نختار على التوالى خمسة طلاب من الذين اشتروا احد المراجع.

ولنعتبر المتغير العشوائي X الذي يعبر عن عدد الطلبة المعجبين بالمرجع الذي اختاروه من بين هؤلاء الخمس طلبة.

- $\{0,1,2,3,4,5\}$ بين ان X باخذ القيم:
 - ب) عرف قانون احتمال X.
- ج) احسب احتمال ان يعجب بالمرجع اكثر من 3 طلبة.
- 5) نختار عشوانیا n طالب من الذین اشتروا احد المراجع (n عدد طبیعی) ولنعتبر P_n احتمال ان یکون n طالب معجب بمرجعه.
 - $P_n < 0.01$ يكون: $P_n = (0.82)^n$ انذا علمت ان: $P_n = (0.82)^n$

التمرين الثالث: (04 نقاط)

 $Z^2 + 2Z + 4 = 0$(1) خل في مجموعة الاعداد المركبة $\mathbb C$ ؛ المعادلة (1

 $Z_A=-2$: لواحقها C و B ، A المستوي المركب منسوب الى معلم متعامد ومتجانس (C بنتبر النفط C بنتبر النفط C المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل نعتبر النفط C بنائل على المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل على المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل على المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل على المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل على المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل على المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل على المستوي المركب منسوب الى معلم متعامد ومتجانس C بنائل على المستوي المركب منسوب الى المستوي المركب المستوي المركب منسوب الى المستوي المركب المركب

- Z_{c} عين الشكل الأسي لكل من Z_{B} ، تمّ استنتج الشكل الأسي للعدد المركب (1
- استنتج ان النقط $B \cdot A$ تنتمي الى نفس الدائرة يطلب تعيين مركزها ونصف قطرها (2
- . $Z_D = -3 + i\sqrt{3}$: نعتبر النقطة D بين ان Z_D نظيرة النقطة D نعتبر النقطة المحتبد (3
 - BCD على شكله الاسي ثم استنتج طبيعة المثلث على شكله (4 كتب العدد $\frac{Z_C-Z_B}{Z_D-Z_B}$
- $\left|\frac{iZ+2i}{-2Z-2+2i\sqrt{3}}\right|=\frac{1}{2}$ حيث (B) حيث (B) مجموعة النقط (Δ) مجموعة النقط (Δ) المجموعة (Δ)

التمرين الرابع: (07 نقاط)

- الدالة العددية f معرفة على $]0,+\infty[$ [0,0] الدالة العددية f معرفة على [0,0] المستوي [0,i,j] المنسوب الى معلم متعامد و متجانس [0,i,j]
 - ا احسب $\lim_{x \to \infty} f(x)$ و فسر النتائج هندسيا. $\lim_{x \to \infty} f(x)$ احسب $\lim_{x \to \infty} f(x)$ و فسر النتائج هندسيا.
 - ب) ادرس اتجاه تغیر الدالة f وشکل جدول تغیر اتها
 - . y=1 ادرس الوضع النسبي المنحنى C_f والمستقيم ذو المعادلة (2
 - (3) احسب f(-x) + f(x) وماذا تستنتج
 - $-0.71 < \alpha < -0.70$: حيث α حيث f(x) = 0 تقبل حلا وحيدا (4
- بين أن المنحنى $\begin{pmatrix} C_f \end{pmatrix}$ يقبل مماسا $\begin{pmatrix} T \end{pmatrix}$ يشمل النقطة $\begin{pmatrix} A(0,1) \end{pmatrix}$ ويمس المنحنى $\begin{pmatrix} C_f \end{pmatrix}$ في نقطتين يطلب حساب الحداثيات كل منهما ثم تحقق ان: $y = -\frac{1}{c}x + 1$ معادلة للمماس $y = -\frac{1}{c}x + 1$
 - (C_f) ارسم بعنایة المماس (T) والمنحنی (6
 - معادلة له y=mx+1 مستقيم حيث (Δ_m) معادلة له (7)

 (Δ_m) تحقق انه من اجل كل عدد حقيقي m النقطة A(0,1) تنتمي الى كل المستقيمات أ

f(x) = mx + 1 عدد حلول المعادلة m عدد الوسيط الحقيقي m عدد حلول المعادلة

n حيث x=n و x=1 و y=1 المستقيمات التي معادلاتها X=n و X=n و X=n مساحة الحيز المستوي المحدد بالمنحنى X=n المستقيمات التي معادلاتها X=n و X=n المستقيمات التي معادلاتها X=n المستقيم المحدد بالمنحنى X=n عين اصغر عين اصغر عيد طبيعي X=n بحيث اذا كان X=n المستوي المحدد بالمنحنى X=n عين اصغر ع

انتهى الموضوع الثاني

صفحة 4 من 4