الأشــــــــــقاقـــ

. الاشتقاقية: f دالة معرفة على مجال I يشمل العدد الحقيقى x_0 و f تثيلها البياني F

(حيث
$$l$$
 عدد حقيقي $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ أو $l = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l$ اذا كانت $l = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ فإن الدالة $l = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

 $f'(x_0)$ معامل توجيهه $A(x_0;f(x_0))$ عند النقطة عند النقطة $A(x_0;f(x_0))$ ماسا معامل توجيهه \spadesuit $y = f'(x_0)(x - x_0) + f(x_0)$ و معادلة هذًا المماس هي من الشكل

 $x=x_0$ نصف مماس يوازي حامل محور الترتيب معادلته $A(x_0;f(x_0))$ نصف مماس يوازي حامل محور الترتيب معادلته lacktriangle

 x_0 اذا كانت $t_1 \neq l_2$ فإن الدالة $t_2 \neq l_3$ وكان $t_1 \neq l_3$ فإن الدالة $t_3 \neq l_3$ عند عند عند $t_3 \neq l_3$ اذا كانت $t_4 \neq l_3$ فإن الدالة $t_3 \neq l_3$ عند عند $t_4 \neq l_3$ عند عند $t_4 \neq l_3$ عند عند الدالة $t_4 \neq l_3$ عند الدالة ال ، نقطة زاوية A وتدعى $A(x_0;f(x_0))$ مناسين عند النقطة A وتدعى A بقطة زاوية A

🛪 مشتقات دوال مألوفة :

f(x)	f'(x)	مجالات قابلية الاشتقاق		
k عدد حقیقی) k	0	\mathbb{R}		
x	1	\mathbb{R}		
$ (n \ge 2; n \in \mathbb{N}) \ x^n $	nx^{n-1}	\mathbb{R}		
$\frac{1}{x}$	$-\frac{1}{x^2}$	$]0;+\infty[$ $]0;+\infty[$ $]0;+\infty[$		
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0;+\infty[$		
$\cos x$	$-\sin x$	\mathbb{R}		
$\sin x$	$\cos x$	$\operatorname{ps} x \parallel \mathbb{R}$		

المشتقات و العمليات على الدوال f = f و g دالتان قابلتان للاشتقاق على مجال I من $\mathbb R$ و k عدد حقيقى $\mathbb R$

الدالة	f+g	kf	$f \times g$	$(f \neq 0 \ \mathbf{v}) \ g = \frac{1}{f}$	$g \neq 0$ ر مع $g \neq 0$	$(f \geq 0$ مع $g = \sqrt{f}$
المشتقة	f'+g'	kf'	$f' \times g + g' \times f$	$g' = -\frac{f'}{f^2}$	$\frac{f'.g - g'.f}{g^2}$	$g' = \frac{f'}{2\sqrt{f}}$

🗷 مشتقة بعض الدوال :

الدالة	\int_{0}^{n}	f(x) = g(ax + b)	$f(x) = \sin(ax + b)$	$f(x) = \cos(ax + b)$	$g \circ f(x)$
المشتقة	$nf'f^{n-1}$	f'(x) = ag'(ax + b)	$f'(x) = a\cos(ax + b)$	$f'(x) = -a\sin(ax+b)$	$f'(x) \times g'(f(x))$

₩ نقطة الانعطاف:

 $A(x_0; f(x_0))$ من أجل x_0 مغيرة إشارتها بجوار x_0 فإن المنحني x_0 يقبل نقطة انعطاف x_0 من أجل x_0 مغيرة إشارتها بجوار x_0 فإن المنحني x_0 عند نقطة الانعطاف x_0

سلسلة تمارين الاشتقاقية

√ التمرين 01 ▶.

التالية : x_0 ماذا تستنتج ? ثم فسر النتيجة هندسيا في كل حالة من الحالات التالية : x_0 ماذا تستنتج . ثم فسر النتيجة هندسيا في كل حالة من الحالات التالية : x_0

 $x_0 = 0$; $f(x) = x^3 - 2x^2 + 2 \spadesuit [2]$

 $x_0 = 1$; $f(x) = 2x|x - 1| \blacklozenge [4]$

√ التمرين 02 ◄ ــ

، دالة معرفة على $\mathbb{R}-\{-1\}$ كمايلي $\mathbb{R}+\{-1\}$: كمايلي $f(x)=|x|+rac{4}{x+1}$ دالة معرفة على f

اكتب f دون رمز القيمة المطلقة . lacktriangle

. احسب $\frac{1}{h} = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$ و $\lim_{h \to 0} \frac{f(h) - f(0)}{h}$ ماذا تستنتج ؟ ثم اعط تفسيرا هندسيا لهذه النتيجة .

 $x_0=0$ اكتب معادلتي المماسين $(ilde{ riangle}_1)^n$ و $(ilde{ riangle}_2)^n$ للمنحني المنطقة التي فاصلتها $(ilde{ riangle}_1)^n$

√ التمرين 03 ◄_

التالية : \oint على مجموعة تعريفها (D_f) في كل حالة من الحالات التالية :

 $D_f = \mathbb{R} - \{-1\}; \qquad f(x) = x - 1 + \frac{4}{x + 1} \bullet [3] \qquad \qquad D_f = \mathbb{R}; \qquad f(x) = 2x^3 - 3x^2 + 7 \bullet [1]$

احسب g'(x) بدلالة f(x) في كل حالة من الحالات التالية :

 $g(x) = f(\frac{1}{x}) \blacklozenge [4]$ $g(x) = f(x^3) \blacklozenge [3]$ $g(x) = f(x^2) \blacklozenge [2]$ $g(x) = f(3x+1) \blacklozenge [1]$

√ التمرين 04 ◘ .

 $f(x)=a+rac{b}{x-3}$ نعتبر الدالة العددية f معرفة على $\mathbb{R}-\{3\}$ كما يلي:

. $(O; ec{i}; ec{j})$ مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f)

النقطة في النقطة والمراتيب في النقطة (C_f) يقطع حامل محور التراتيب في النقطة أو النقطة النقطة والتراتيب في النقطة المراتيب المرات

 (C_f) التي ترتيبتها $rac{4}{3}$ ويقبل المستقيم الذي معادلته y=2 مقارب للمنحني

- b=2 فرض فيما يلي أنa=2 : فرض فيما نفر ف
 - f ادرس تغيرات الدالة \blacklozenge
- . مع محوري الاحداثيات نقط تقاطع للمنحني (C_f) مع محوري الاحداثيات lacktriangle
- lacktriangledown 2يقبل مماسين معامل توجيه كلا منهما يساوي $lacktriangledown C_f$ يقبل مماسين معامل توجيه كلا منهما يساوي

√ التمرين 05 🕨

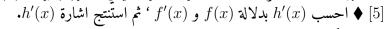
- . أعداد حقيقية $c,\ b,\ a$ حيث $f(x)=ax^3+bx+c$ على $\mathbb R$ كما يلي: $f(x)=ax^3+bx+c$
- B(0;1) علما أنَّ التمثيل البياني (C_f) الممثل للدالة f يشمل النقطة A(1;-3) ويقبل في النقطة (C_f) علما أنَّ التمثيل البياني y=-6x+1 ويقبل في النقطة y=-6x+1 مماسا يوازي المستقيم (\triangle) الذي معادلته (Δ)
 - و عددان حقیقیان. $g(x)=ax^3+bx^2+1$ یلی: \mathbb{R} کما یلی: $g(x)=ax^3+bx^2+1$
 - . الممثل للدالة g عيّن العددين a و b علما أنّ التمثيل البياني (C_g) الممثل للدالة g يقبل في النقطة A(1;2) مماسا يوازي محور الفواصل lacktriangle
 - . عندها واكتب معادلة المماس لـ (C_g) نقطة إنعطاف w يطلب تعيينها واكتب معادلة المماس لـ (C_g) عندها \spadesuit
 - هي الدالة المعرفة على $\mathbb R$ كما يلي: $\frac{3x^3+ax+b}{x^2+1}$ حيث a و a عددان حقيقيان. h
 - . 4 عيّن العددين a و b علما أنّ التمثيل البياني (C_h) الممثل للدالة d يقبل في النقطة a علما أنّ التمثيل البياني (C_h) الممثل للدالة (C_h)

√ التمرين 06 ◄ ـ

ullet ($O; ec{i}; ec{j}$) الدالة المعرفة على المجال [-1; 3] و (C_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f) مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f) و (C_f) مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f) و (C_f) مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (C_f) و (

بقراءة بيانية

- [-1;3] على المجال تغيرات الدالة f على المجال \bullet
 - $\bullet[-1;3]$ على المجال f(x) على المجال [2]
 - [-1; 3] عين اشارة f'(x) على المجال \bullet
- $g(x)=[f(x)]^2$: كما يأتي : [-1;3] لمعرفة علة المجال g
 - g'(x) بدلالة g(x) و f'(x) على استنتج اشارة g'(x) احسب g'(x)
 - (5) ♦ شكل جدول تغيرات الدالة و
- $h(x)=[f(x)]^3$: كما يأتي [-1;3] المعرفة علة المجال [-1;3] كما يأتي \spadesuit
 - [7] ♦ شكل جدول تغيرات الدالة h

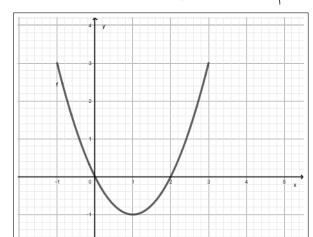


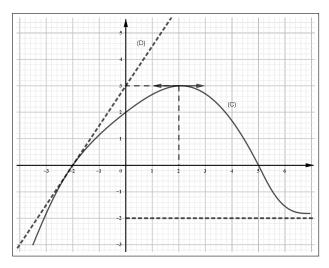
√ التمري*ن* 07 ◄ ـ

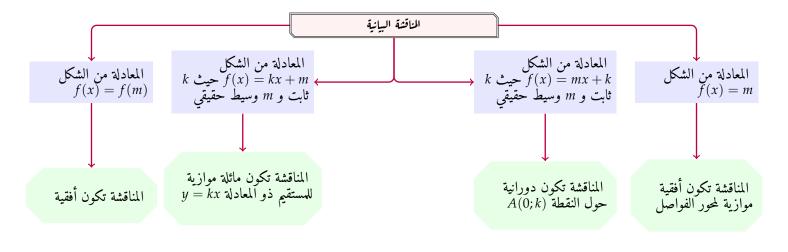
المقابل هو التمثيل البياني للدالة العددية f المعرفة على $\mathbb R$. المنحنى T

♠ بقراءة بيانية عيّن ♠

- $f(0) = \dots f(5) = \dots f(5)$
- $f(-2) = \dots f(2) = \dots f(2) = \dots f(2)$
- $f'(-2) = \dots f'(2) = \dots f'(2)$
- $\lim_{x \to +\infty} f(x) = \dots \qquad \qquad \lim_{x \to -\infty} f(x) = \dots \spadesuit [4]$
 - $y = \dots x + \dots : (D)$ معادلة المماس \blacklozenge [5]
 - [6] ♦ وضعية المنحني (C) بالنسبة إلى حامل محور الفواصل
 - f(x) جسب قيم x إشارة
 - f'(x) مسب قيم x إشارة lacktriangle
 - . f شكل جدول تغيرات الدالة [9]
 - f(x) = 2: علول المعادلة \bullet [10]
 - $f(x) \geq 2$: حلول المتراجحة \bullet [11]
- . f(x) = m : ناقش بيانيا حسب قيّم الوسيط الحقيقى m عدد و اشارة حلول المعادلة: $lack{\Phi}$







الدالة الزوجية :

إذا كانت f(x) = f(-x) نقول أن الدالة f زوجية وتمثيلها البياني متناظر بالنسبة إلى محور التراتيب -

الدالة الفردية :

إذاً كانت f(-x) = -f(x) نقول أن الدالة f فردية وتمثيلها البياني متناظر بالنسبة لمركز المعلم.

الدالة الدورية:

باذا كانت $\frac{f(x+p)=f(x)}{f(x+p)}$ نقول أن الدالة f دورية وتمثيلها البياني يعيد نفسه عند كل مجال طوله f

مركز التناظر:

 $A(\alpha; \beta)$ نقول أن التمثيل البياني للدالة f يقبل مركز تناظر هو النقطة والتقطة $f(2\alpha - x) + f(x) = 2\beta$

محور التناظر:

x=lpha نقول أن التمثيل البياني للدالة f يقبل محور تناظر هو المستقيم ذو المعادلة f(2lpha-x)=f(x)

■ التقاطع مع محور الفواصل:

لتعيين نقط تقاطع (C_f) مع محور الفواصل نحل المعادلة f(x)=0 ونجد فواصل هذه النقط مع العلم أن ترتيباتها معدومة.

التقاطع مع محور التراتيب:

لتعيين نقط تقاطع (C_f) مع محور التراتيب نحسب f(0) ونجد ترتيبات هذه النقط مع العلم أن فواصلها معدومة.

استنتاج تمثيل بياني من آخر :

- و إذا كانت $\frac{h(x) = |f(x)|}{h(x)}$ فإن (C_h) منطبق على (C_f) لما يكون (C_f) فوق محور الفواصل. و (C_f) نظير (C_f) بالنسبة لمحور الفواصل لما يكون (C_f) تحت محور الفواصل.
 - x > 0 فإن (C_f) منطبق على (C_f) لما يكون (C_h) فإن h(x) = f(|x|) لما يكون (C_h) و و (C_h) نظير (C_f) بالنسبة لمحور التراتيب لما يكون (C_h)
 - وانات h(x) = -f(x) فإن $h(C_h)$ نظير h(x) = -f(x) بالنسبة لمحور الفواصل.
 - وإذا كانت h(x) = f(-x) فإن $h(C_h)$ نظير h(x) = f(-x) بالنسبة لمحور التراتيب.
- $\vec{v}(_b^{-a})$ فإن $\vec{v}(_b^{-a})$ هو صورة $\vec{v}(_f)$ بالإنسحاب الذي شعاعه $\vec{v}(_h)$ فإن $\vec{v}(_h^{-a})$ هو صورة $\vec{v}(_h^{-a})$
 - ونظير (C_f) بالنسبة لمركز المعلم، h(x) = -f(-x) إذا كانت h(x) = -f(-x)