الجمهورية الجزائرية الديمقراطية الشعبية

دورة ما*ي* 2021

وزارة التربية الوطنية

امتحان بكالوريا التجريبي للتعليم الثانوي

الشعبة: تقني رياضي

المدة : 04 سا و 30 دقيقة.

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار احد الموضوعين التاليين:

الموضوع الأول

يحتوي الموضوع الاول على 04 صفحات (من الصفحة 01 من 08 إلى الصفحة 04 من 08)

التمرين الأول: (05 نقاط)

1- من أجل تحضير المركب (X) و هو 2- (ثنائي ايثيل أمينو) ايثيل 4 - أمينو بنزنوات (X) و هو 2- (diethylamino) ethyl 4-aminobenzoate)

المعروف باسم مخدر موضعي، معد للحقن يستخدم في التخدير الشوكي، الأمراض العصبية والتشنجات والآلام الرثوية (الروماتزم) و كذلك للحصول على تأثير مديد للبنسلين بمشاركته معه لأنه يعطي معه مركب ضعيف الذوبان ينحل في المذيبات العضوية ببطء .

نجري سلسلتين من التفاعلات:

من جهة:

+
$$CH_3$$
- CI $AICl_3$ A + HCI

A + HNO_3 H_2SO_4 B + H_2O

B Fe C

 HCI C

 $KMnO_4$ D

 H_2SO_4 D

 H_2SO_4 D

 H_2SO_4 D

و من جهة أخرى:

$$H_2C \longrightarrow CH_2$$
 $\xrightarrow{CH_3CO_3H}$ F
 $F + H_2O \longrightarrow G$
 $G + SOCI_2 \longrightarrow H + SO_2 + HCI$
 $H + E \longrightarrow I + HCI$
 $I + C_2H_5 - NH - C_2H_5 \longrightarrow H_2N \longrightarrow C_2H_5 + HCI$

- استنتج الصيغ نصف المفصلة للمركبات: A, B, C, D, E, F, G, H, I.

2- بلمرة المركب D تعطي بوليمير J .

أ- مانوع البلمرة؟

ب- اكتب معادلة التفاعل الحادثة.

 $_{\rm c}$ استنتج الكتلة المولية المتوسطة للبوليمير إذا علمت أن درجة البلمرة تقدر بـ 1700. $M_{\rm c}$ $M_{\rm c}$ $M_{\rm c}$ $M_{\rm mol}$, $M_{\rm mol}$ $M_{\rm mol}$ $M_{\rm mol}$ $M_{\rm mol}$

التمرين الثاني: (05 نقاط)

- I يتكون زيت من %5 من الحمض الدهني (A) و %5 من ثلاثي الغليسيريد (B) و %50 من ثلاثي الغليسيريد (C) .
 - ✓ تعديل 2,82g من الحمض الدهني (A) يتطلب 20mL من(NaOH) بتركيز (NaOH).
- \checkmark أكسدة الحمض الدهني (A) ببر منغنات البوتاسيوم المركز و في وجود حمض الكبريت المركز تعطي حمض ثنائي الوظيفة له 9 ذرات كربون و حمض أحادي الوظيفة.
 - 1. احسب الكتلة المولية للحمض الدهني (A).
 - 2. استنتج الصيغة نصف المفصلة للحمض الدهني (A).
 - √ ثلاثي الغليسيريد (B) له دليل تصبن Is=208,4 متجانس و يتكون من حمض دهني مشبع F.
 - 3 . احسب الكتلة المولية لـثلاثي الغليسيريد (B) و أكتب صيغته نصف المفصلة.
- ✓ يتكون ثلاثي الغليسيريد (C) من حمضين من الحمض الدهني (A) و حمض واحد من الحمض الدهني (F).
 - 4 . أوجد الكتلة المولية لثلاثي الغليسيريد (C).
 - 5 . أوجد دليل الحموضة Ia ، دليل التصبن Is و دليل اليود Ii لهذه العينة من الزيت.

 $M_I\!\!=127g/mol$, $M_c\!\!=\!12g/mol$, $M_H\!\!=\!1g/mol$, $M_O\!\!=\!16g/mol$, where $M_K\!=\!39~g/mol$, $M_{Na}\!\!=\!23g/mol$

II _ لديك الاحماض الامينية التالية:

الأسبارتيك Asp	الهستدين His	التريبتوفان Trp
PKa ₁ =1,88 pKa ₂ =9,60 pKa _R =3,66	40 / 0 - 1 / /	$_{\rm H}^{\rm NH_2}$ — $_{\rm CH_2-COOH}^{\rm CH_2-CH-COOH}$ $_{\rm NH_2}^{\rm NH_2}$ $_{\rm pKa_1=2,83}^{\rm RA_2=9,39}$

- 1. صنف الاحماض الأمينية السابقة.
- 2. اكتب الصيغ الأيونية للحمض الاميني (His) عند تغير الـ pH من 1 الى 14.
 - 3. مثل الصورتين L و D للحمض الاميني (Trp).
- 4. وضعت الاحماض الأمينية السابقة في جهاز الهجرة الكهربائية الذي يحتوي على محلول منظم ذو pH = 5, 7
 - أ ـ أوجد الصيغ الأيونية المتواجدة لحمض الاسبارتيك و الحمض الاميني التريبتوفان وحدد الصيغ السائدة.
 - ب مثل الأحماض الامينية السابقة على مخطط الهجرة مع الشرح.
 - X: Trp-Asp , Y: Asp-His-Trp . تحليل بيوري . (Y) و (Y) تحليل بيوري .
 اكمل الجدول.

النتيجة (إيجابي/سلبي)	لون المعقد	يتشكل معقد	يتفاعل مع بيوري	
				الببتيد X
		***************************************		الببتيد Y

التمرين الثالث: (06 نقاط)

1046g من حمض البنزويك الصلب في مسعر حراري اديباتيكي يحتوي على m=0.8624g من الماء، نلاحظ ارتفاع درجة الحرارة من $T_1=24^\circ$ C إلى $T_2=27.5^\circ$ C بعد احتراق العينة بالأكسجين.

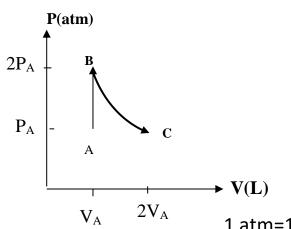
يعطى : C_6H_5 - COOH(s) و معادلة الاحتراق هي

$$\mathcal{C}_6 \text{ H}_5 - \text{COOH(s)} + \cdots \text{O}_{2(g)} \rightarrow \cdots \text{CO}_{2(g)} + \cdots \text{H}_2 \text{O}_{(l)} \quad \Delta \text{H}^\circ \text{com} = -3227 \text{kj /mol}^\circ$$

 $M_{O}=16 g/mol$ $M_{c}=12 g/mol$ $M_{H}=1 g/mol$ $Cp(H_{2}O)_{(l)}=75,24 j/mol$. k : علما أن

- 1. ماهي كمية الحرارة Q_1 الناتجة عن احتراق حمض البنزويك الصلب ؟.
 - 2. احسب السعة الحرارية للمسعر.
 - ΔH°_{f} المعياري ΔH°_{f} لتشكل حمض البنزويك الصلب.

 $\Delta H^{\circ}_{f(CO2)(g)} = -393$ kj /mol , $\Delta H^{\circ}_{f(H2O)(l)} = -286$ kj /mol : يعطى


إختبار في مادة: هندسة الطرائق/ الشعبة: تقني رياضي / بكالوريا دورة ماي 2021

4. أوجد أنطالبي الإحتراق لحمض البنزويك الصلب عند $T=110^{\circ}$ C علما أن الماء يتبخر عند $T=100^{\circ}$ C .

يعطى :

المركب	C ₆ H ₅ - COOH(s)	$O_2(g)$	$H_2O(l)$	$H_2O(g)$	CO ₂ (g)
C _P (j/ mol.k)	146,7	29,37	75,24	33,58	37,58
			$T_{vap}=100^{\circ}C$		
			ΔH_{vap} =40,7 Kj/mol		

II - يخضع 1mol من غاز مثالي الى التحولين المتتاليين حسب المخطط التالي:

	P(atm)	V(L)	°) T(C
A	$P_A=5$	$V_A=2$	$T_A=25$
В	2P _A	V_{A}	T_{B}
С	P _A	2V _A	$T_C = T_B$

- 1. حدد طبيعة التحول(AB) و التحول (BC).
 - $T_{\rm B}$. Lemp $T_{\rm B}$
- 3. احسب العمل للتحول (AB) و التحول (BC).

1 atm=1,013×10⁵ Pa \cdot R= 8.314 j/ mol.k

التمرين الرابع: (04 نقاط)

مسعر حراري كتلته و هو فارغ $m_1=219.1g$ نضع فيه كتلة من الماء البارد ثم نزن كتلة الجملة (المسعر و الماء $m_1=20.1g$ و نقيس درجة الحرارة الإبتدائية $m_2=365.7g$ ، ثم نضيف كتلة $m_3=365.7g$ من الجليد $m_3=387.7g$ و نقيس درجة الحرارة عند درجة حرارتها $m_3=387.7g$ و نقيس درجة الحرارة عند التوازن $m_3=387.7g$.

- 1. احسب الحرارة النوعية لإنصهار الجليد 1.
- Δ L_{fus} استنتج الأنطالبي المولي لإنصهار الجليد Δ
 - 3. اكتب معادلة إنصهار الجليد.

 $C_e = 4,185 \text{ j/g.k}$, $C_g = 2.09 \text{ j/g.k}$: يعطى

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة $\overline{0}$ من 08 إلى الصفحة 08 من 08)

التمرين الأول: (05 نقاط)

 C_xH_yO أثناء عملية الاحتراق التام لحجم قدره C_xH_yO أثناء عملية الاحتراق التام لحجم قدره (X) من المركب(X) ، يتشكل (X) من غاز أكسيد الكربون و (X) من المركب ((X)) ، يتشكل ((X)) من غاز أكسيد الكربون و (X)0,45g) من الماء. علما أن الحجوم مقاسة في نفس الشروط النظامية .

أ- اكتب معادلة الإحتراق التام للمركب العضوي (X).

ب- أوجد الصيغة الجزيئية المجملة لهذا المركب.

ج- أوجد الصيغ نصف المفصلة الممكنة للمركب (X).

(X) في سلسلة التفاعلات التالية:

1) (X)
$$\frac{\text{Cu}}{350 \, ^{\circ}\text{C}}$$
 (A)

3) (B) +
$$Cl_2 \longrightarrow UV \rightarrow (C) + HCI$$

8) (G)
$$\frac{\text{LiA1H}_4}{\text{H}_2\text{O}}$$
 (H)

9) (H)
$$\frac{\text{Al}_2\text{O}_3}{350 \text{ °C}}$$
 (I) + H₂O

10) (I)
$$\frac{\text{KMnO}_4(\text{dil})}{}$$
 (J) H_3C
11) $\text{nJ} + \text{nK} \longrightarrow - \left[O \longrightarrow \text{CH}_2 - \text{HC} \longrightarrow O \longrightarrow C - \left(\text{CH}_3 \right) \bigcap \left(\text{CH}$

أ- أوجد الصيغة نصف المفصلة للمركبات: A, B, C, D, E, F, G, H, I, J, X علما أن A يتفاعل مع DNPH و عند مفاعلته مع كاشف طولنس يظهر مرآة فضية.

إختبار في مادة: هندسة الطرائق / الشعبة: تقنى رياضي / بكالوريا دورة ماي 2021

ب- ما اسم التفاعل (2) و التفاعل (10)؟

ت- اكتب مقطع من البوليمير يحتوي على وحدتين بنائيتين.

ث- إذا كانت درجة البلمرة للبوليمير هي 5000، احسب الكتلة المولية المتوسطة للبوليمير.

التمرين الثاني: (05 نقاط)

I. في عينة من مادة دهنية تتكون من أحادي غليسيريد متجانس (MG) نسبة الاكسجين فيه %19,51 و ثنائي غليسيريد متجانس (DG) نسبة الاكسجين %17,543 و ثنائي غليسيريد متجانس (DG) نسبة الاكسجين فيه %19,11 كما يلى:

بغرض معرفة الاحماض الدهنية التي تتكون منها المركبات السابقة لدينا ما يلي:

- الحمض الدهني A : تتفاعل كتلة منه قدر ها 3,8g مع كتلة من اليود قدر ها 3,8g و يرمز له $1\Delta^9$
- الحمض الدهني B: تعديل كتلة منه قدرها 1g يتطلب 10mL من الصودا 0,5mol/L) NaOH) و لا يتفاعل مع اليود.
 - الحمض الدهني C : ناتج من هدرجة الحمض الدهني A.
 - 1. أوجد الصيغة نصف المفصلة للحمض الدهني A و C .
 - 2. برهن أن علاقة الحموضة للحمض الدهني B تكتب كما يلي: Ia=5M_{NaOH} و احسب قيمتها .
 - 3. استنتج الصيغة نصف المفصلة للحمض الدهني B و رمزه المختصر.
 - 4. استنتج الصيغ نصف المفصلة للمركبات السابقة (MG) و (DG) و (TG) .

 $M_I\!\!=127 g/mol$, $M_c\!\!=\!12 g/mol$, $M_H\!\!=\!1 g/mol$, $M_O\!\!=\!16 g/mol$, $M_K\!=\!39 g/mol$, $M_{Na}\!\!=\!23 g/mol$

- II. الإماهة الحامضية لببتيد (y) أعطت أربع أحماض A, B, C, D.
- 1. استنتج ماهية هذه المكونات انطلاقا من الوثيقة (1) و الوثيقة (2).

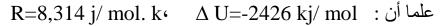
المميزات	المركب
غير فعال ضوئيا	В
يتفاعل مع كزانتوبروتيك	C
نزع مجموعة الكربوكسيل منه تعطي	D
H_2N-H_2C CH_2 $NH-C-NH_2$ NH	

الوثيقة(1)

إختبار في مادة: هندسة الطرائق/ الشعبة: تقني رياضي / بكالوريا دورة ماي 2021

pKa _R	pKa ₂	pKa ₁	صيغته (الجذر R-)	الحمض الاميني
8,18	10,28	1,96	-CH ₂ -SH	سستييين Cys
12,48	9,04	2,17	$\left(CH_{2}\right) NH - C - NH_{2}$ $3 NH$	الأرجنين Arg
10,07	9,11	2,20	-CH ₂ -(-)-OH	التيروزين Tyr
	9,60	2,34	-H	الغليسينGly

الوثيقة (2)


- 2. اكتب صيغة المركب (B-D-A-C) عند pH=12 وpH=12.
 - 3. كيف نكشف عن هذا المركب تجريبيا مع الشرح.
- لهجرة الكهربائية عند A , D وضعت هذه المركبات في جهاز الهجرة الكهربائية عند pH=5.97 .
- 4. جد الصبيغة الأيونية المتواجدة و الصيغة السائدة للمركب D عند pH=5,97 و الشكل الأيوني الذي تهجر به
 - 5. وضح على مخطط الهجرة اتجاه كل حمض أميني مع التعليل.

التمرين الثالث: (06 نقاط)

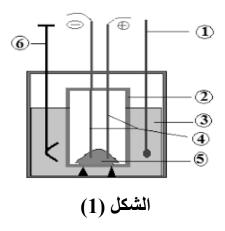
I- السكاروز أو سكر المائدة عبارة عن أوزيد ثنائي يستخلص من القصب أو الشمندر، صيغته الجزئية العامة هي $(C_{12}H_{22}O_{11})$. نقوم بحرق كتلة $m_S=3.42$ g من هذا السكر الصلب في مسعر حراري (الشكل 1) سعته الحرارية $C_{cal}=240$ g و يحتوي على كتلة $m_{eau}=500$ من الماء عند درجة حرارة $m_{eau}=1$ atm $m_{eau}=1$ المنادة المناد

1. اكتب معادلة احتراق السكاروز الصلب.

معياري لاحتراق السكاروز الصلب ΔH°_{com} .

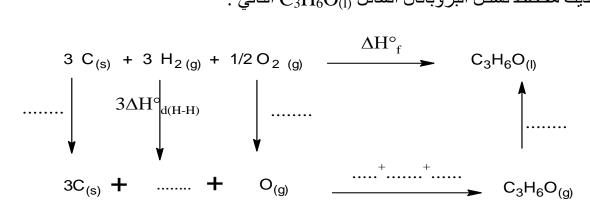
3.أ - ماهي كمية الحرارة Q بـ Kj الناتجة عن احتراق السكاروز داخل المسعر؟

. C_{eau}=4,185 j/ g.k يعطى:


 \mathbf{r}_{eq} استنتج درجة حرارة التوازن \mathbf{r}_{eq} داخل المسعر

ج - اعط البيانات المرقمة من 1 إلى 6 في الشكل (1).

 $c_{\rm u}$. أحسب كتلة المسعر، علما أن الحرارة المولية $C_{\rm u}$ ، أحسب كتلة المسعر، علما أن الحرارة المولية $C_{\rm cu}=25,4$ j/ $C_{\rm cu}=25,4$ j


 $\Delta H^{\circ}_{f(C12H22O11(s))}$ السكاروز الصلب الأنطالبي المولى لتشكل السكاروز الصلب

 $\Delta \, H^{\circ}_{f(CO_2(g))} = -393 \, k \, j / \, mol$, $\Delta \, H^{\circ}_{f(H_2O(I))} = -286 \, k \, j / \, mol$: يعطى

إختبار في مادة: هندسة الطرائق / الشعبة: تقني رياضي / بكالوريا دورة ماي 2021

التالى : $C_3H_6O_{(1)}$ التالى البروبانال السائل

- 1. اكمل المخطط السابق.
- $\Delta H^{\circ}_{f}(C_{3}H_{6}O_{(1)})$ السائل البروبانال السائل تشكل البروبانال السائل .2

$$\Delta \text{ H}^{\circ}_{\text{vap}}(\text{C}_3\text{H}_6\text{O})=29,7 \text{ k j/ mol}$$

$$\Delta H^{\circ}_{sub}(C_{(s)}) = 717 \text{ k j/ mol}$$
 يعطى:

الرابطة	C-C	C=O	O=O	С-Н	Н-Н
$\Delta H^{\circ}_{d}(k j/mol)$	347	749	498	410	437

التمرين الرابع: (04 نقاط)

نقوم بدر اسة تفاعل إماهة 2- برومو مثيل بروبان CH_3 3CBr) في مذيب يتكون من الماء والأسيتون وفق المعادلة التالية :

$$(CH_3)_3CBr + H_2O \longrightarrow (CH_3)_3COH + HBr$$

 $C = [(CH_3)_3CBr]$

t (min)	0	2	4	8	12	20	30	40
C (mol/l)	0.100	0.090	0.080	0.065	0.052	0.033	6 10	0.011
							0	

- 1. اثبت أن التفاعل من الرتبة الأولى.
- 2. احسب ثابت السرعة K بطريقتين.
 - $t_{1/2}$ احسب زمن نصف التفاعل $t_{1/2}$
- 4. ما هو الزمن اللازم لتفاعل %70 من التركيز الابتدائي من 2- برومو مثيل بروبان ؟

انتهى الموضوع الثاني