متقن بلبشير +حاسى القارة + ديدوش مراد السنة الدراسية :2020/2019

شعبة الثالثة ثانوى تقنى رياضى هندسة الطرائق المدة: 3 ساعات

اختبار الفصل الثاني في مادة هندسة الطرائق

التمرين الأول:

I- يتم تحضير استر نكهة العسل بتفاعل بين الكحولA و حمض عضوي B.

- 1- حيث الكحول A يحتوي على %34.78 من الأكسجين . أوجد الصيغة المجملة و الصيغة نصف المفصلة للكحول
 - 2- للحصول على الحمض العضوي B نجري سلسلة تفاعلات انطلاقا من مركب C علما أنه فحم هيدروجيني أروماتي و كثافة بخاره بالنسبة للهواء d=3.172

علما أن : C=12g/mol O=16g/mol H=1g/mol

1- أوجد الصيغة المجملة و نصف المفصلة للمركب C.

1)
$$C$$
 + $Cl_2 \longrightarrow D$ + HCl

2)
$$D + Mg \longrightarrow E$$

3)
$$E + H - C - H \longrightarrow F$$

4)
$$F + H_2O \longrightarrow G + MgCl(OH)$$

5)
$$G \longrightarrow \frac{\mathsf{KMnO}_4}{\mathsf{H}_2 \mathsf{SO4}} \to B_{\mathsf{Leady}} + \cdots$$

2- حدد صيغ نصف المفصلة للمركبات من D.E.F.G و صيغة الحمض العضوي B.

3- ما نوع و اسم التفاعل 1؟

4- أكتب معادلة تفاعل الكحول A و الحمض B. مع ذكر خصائص هذا التفاعل

5- أحسب الكتلة الكحول A ابتدائية للحصول على 19.68g من الاستر علما أن المزيج متساوي المو لات

II- ثنائي غليسيريد (A) يدخل في تركيبه الأحماض الدهنية التالية:

 $C20: 4\Delta^{5,8,11,14}$: حمض الأر اشيدونيك

 $CH_3 - (CH_2)_{14} - COOH$: حمض البالمتيك

- H_2SO_4 في وسط من حمض الأراشيدونيك بواسطة $KMnO_4$ في وسط من حمض الأراشيدونيك في المراقبة وسط من حمض الأراشيدونيك بواسطة
 - 2)- جد الصيغ نصف المفصلة الممكنة لثنائي الغليسيريد (A)
 - (3) أحسب قرينة اليود I_i اثنائي الغليسيريد (A)
 - 4)- ما هي قيمة قرينة التصبن I_S لثنائي الغليسيريد (A) $^{\circ}$

 M_H =1 g.mol , M_c =12 g.mol, M_o =16 g.mol, M_I =127 g.mol, M_K =39.1 g.mol: علما أن الثانى :

A-B-C-D-E : α إلى الأحماض الأمينية P إلى الليبيد

- 1- استنتج الصيغ النصف مفصلة على للأحماض الأمينية السابقة بالاعتماد على الوثيقة -1- و المعطيات التالية علما أن
 - أ- الحمض الأميني (D) له سلسلة جانبية -R- مشبعة عند نزع مجموعة الكربوكسيلية يعطى المركب X ذو الصيغة X نو المركب X دو الصيغة X بمحلول المركب X نو المركب X بمحلول عند نافؤ قدره 10ml .
 - ب-الحمض الأميني (C) عند معالجة مع النينهدرين يعطى لون أصفر.
 - ت-الحمض الأميني (B) يعطى نتيجة ايجابية مع كاشف كز انتوبر وتيك .
 - ث-الحمض الاميني (A)لديه القدرة على تشكيل رابطة كبريتية .
 - ج- الحمض الأميني (E) يهاجر نحو القطب السالب عند وضعه عند PH=2 واكثر ايجابية.
 - 2- أعط تمثيل فيشر لـ C
 - 3- نضع في جهاز الهجرة الكهربائية لـ A,B,C,D,E عند PH=5.07 بين مواقع كل حمض أميني على الجهاز مع التعليل .
- 4- أكتب الصيغة النصف مفصلة لهذا الببتيد مع التسمية ؟ ماذا يعطى مع كاشف بيوري و كزانتوبرونيك دعم ذلك بمعادلات .
 - 5- أكتب الصيغ الأيونية لهذا البيبتيد عند PH=11 و عند PH=13.
 - 6- أكمل التفاعلات التالية:

$$1- Ser + H_3PO_4 \longrightarrow$$

$$2- 2Cys \longrightarrow$$

$PKa_1 = 2.21,$ $PKa_2 = 9.1$	$R = HO - CH_2$	Ser	سيرين
$PKa_1 = 2.17,$ $PKa_2 = 9.04$ $PKa_R = 12.48$	$R = H_2N - C - (CH_2)_3$ NH	Arg	أرجنين
$PKa_1 = 1.96,$ $PKa_2 = 10.28$ $PKa_R = 8.18$	$HS-CH_2-$	Cys	ستبستئن
$PKa_1 = 1,83$ $PKa_2 = 9,13$	← CH ₂ −	Phe	فينيل ألانين
$PKa_1 = 2.34$ $PKa_2 = 9.69$	$R = CH_3$	ALA	ألانين
$PKa_{1} = 1.99$, $PKa_{2} = 10.60$,	COOH N – H الصيغة الكاملة	Per	برولین

-الوثيقة -

التمرين الثالث: الأجزاء ا و ١١ و ١١١ منفصلة عن بعضها البعض

مسعر حراري أديابتك سعته الحرارية C_{cal} نضع فيه T_{cal} نضع الماء درجة حرارته T_{cal} نضيف إليه T_{cal} 3000 من الماء درجة حرارته T_{cal} فأصبحت حرارته عند التوازن T_{cal} 43.20°

1- أوجد السعة الحرارية للمسعر.

2- نضع قطعة جليد كتلتها m 3= 50g درجتها °T= -10C داخل المسعر السابق في حالة توازن

 $T_{\text{éq(2)}}$ - أوجد درجة حرارة توازن المزيج

$$C_{P_{H_2O_L}}=4.18 J/_{g.k}$$
 , $L_F=335 J/_g$, $C_{P_{H_2O_S}}=2.1 J/_{g.k}$: يعطي

 ا۱. نرفع درجة حرارة 3مول من غاز الهيدروجين (يعتبر غاز مثالي) من °80-إلى °20- عبر شكلين

a-تحول عند حجم ثابت

b-تحول عند ضغط ثابت

- أحسب في كلا الحالتين :
- 1- كمية الحرارة Q و العمل المبذول W.
- . ΔH و التغيير في الأنطالبي ΔU و التغيير في الأنطالبي -2

 $\mathit{C}_P = 87.\,297\,j/g$. k , $\mathit{C}_V = 62.\,355\,j/g$. k R=8.314j/mol.k : يعطى

III- - يحترق للميثانول السائل عند °25C .

- -أحسب أنطالبي احتراق الميثانول السائل عند °25C
- أحسب التغيير في الطاقة الداخلية للميثانول السائل عند°25C.
- أحسب إنطالبي التفاعل احتراق للميثانول السائل عند °150C .
 - أحسب طاقة الرابط O-H للميثانول السائل .

المعطيات:

	$CH_3OH_{(L)}$	$CO_{2_{(g)}}$	$H_2O_{(L)}$	C — H	C-O	H - H	O = 0
$\frac{\Delta H_d}{(Kj/mol)}$	239.2	393.5	286	413	351	436	498

المركب	$CH_3OH_{(g)}$	$CH_3OH_{(l)}$	$H_2O_{(g)}$	$H_2O_{(l)}$	$O_{2(g)}$	$CO_{2(g)}$
C_P $(J/mol.K)$	43.89	81.6	33.58	75.3	29.37	30.5

$$T_{eb\ CH_3OH}=65C^\circ$$
 , $T_{eb\ H_2O}=100C^\circ$

 $\Delta H_{sub^{(c)}} = 717 \, kJ/mol$

 $\Delta H_{vap(CH_3OH)} = 35.4 \, kJ/mol$

 $\Delta H_{VAP^{(H_2O)}} = 44 \, kJ/mol$

- بالتوفيق للجميع -