الجممورية الجزائرية الديمقراطية الشعبية

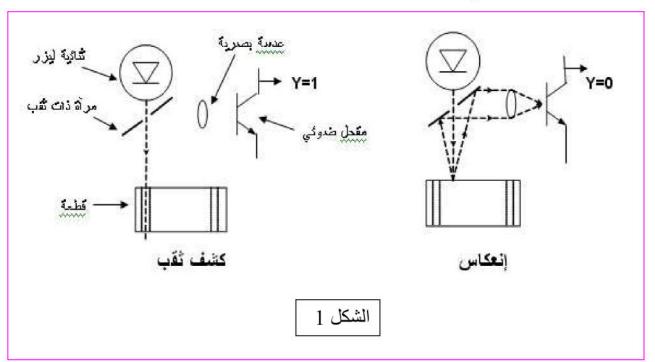
شعبة: تقني رياضي (اختبار الفصل الأول في مادة االتكنولوجيا)

القسم: 3 ت ر (هندسة كهربائية)

نظام آلى لثقب ومراقبة قطع ميكانيكية

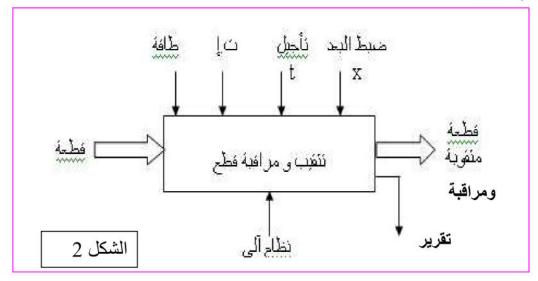
1. هدف التألية : يجب على النظام أن ينجز بصفة مستمرة تثقيب ومراقبة لقطع فو لاذية

2. وصف الكيفية:

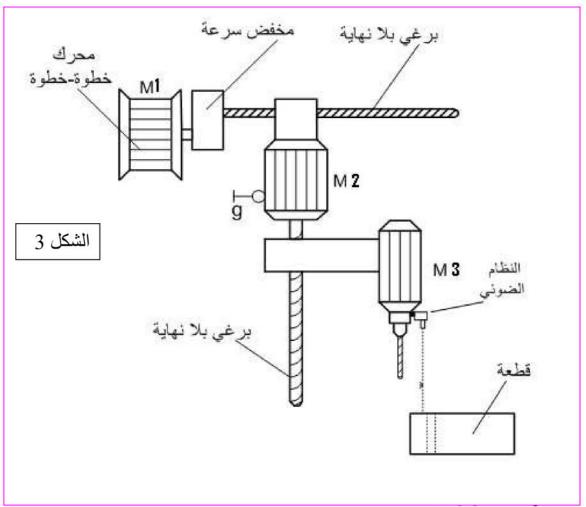

للنظام أربعة وظائف هي:

- a) وظيفة التحميل
- b) وظيفة الانتقال الأفقى لنظام التثقيب
 - c) التثقيب
 - d) المراقبة

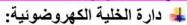
تأتي القطعة إلى مركز التصنيع مثقوبة بثقب أول يتم الكشف عليه بنظام يحتوي على خلية كهروضوئية ليتقدم النظام بواسطة محرك خطوة - خطوة بعدد من الخطوات يوافق البعد بين الثقبين المرغوب فيه ، ليتم بعد ذلك ثقب الثقب الثاني . وعند نهاية التثقيب يرجع النظام إلى وضع الراحة ويطلق صوت منبه يدل على نهاية العملية وذلك بغلق التماس المؤجل K_T.

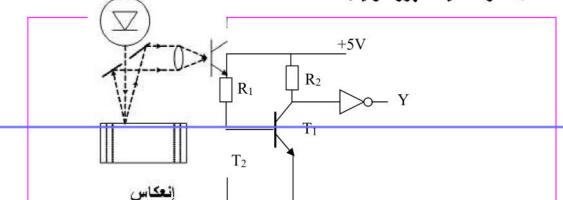

3. بعض التوضيحات على وظيفة مراقبة القطع:

- يحتوي مركز المراقبة على خلية كهروضوئية "y" فيها ثنائية ليزر (diode laser) مثل جهاز قارئ الأقراص سيديروم (CD ROM) التي تنتج شعاع ليزر مركز جدا (شكل 1). يضيء هذا الشعاع ترانزستور ضوئي حساس لأشعة ليزر. الثنائية وترانزستور مركبان على حامل يحركه محرك خطوة ـ خطوة نحو اليمين ونحو اليسار.
- في حالة الراحة ينعكس الشعاع الناتج من الثنائية على القطعة ثم ينعكس على المرآة ليضيء الترانزستور فيغذى المحرك شكل (1) وكل خطوة تكافئ انتقال 1mm .
 - عند كشف الثقب الأول ينطلق نظام عدّ الخطوات للمحرك. وبعد قطع30mm يتوقف المحرك خطوة خطوة وتبدأ عملية تثقيب الثقب الثاني .



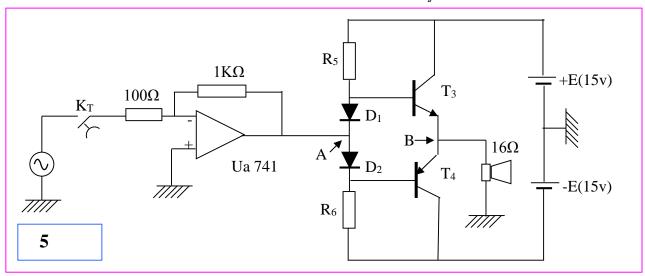
II. التحليل الوظيفي:


الوظيفة العامة:



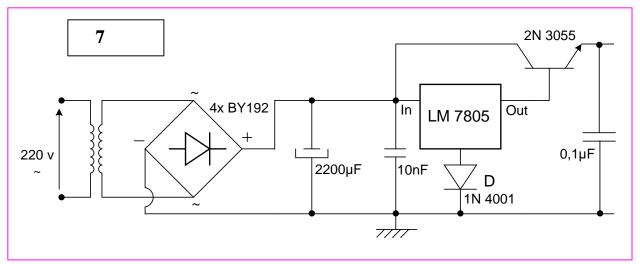
III. المناولة الهيكلية:

.IV




T₁ (2N2222A) T₂ (BPX81)

4


🚣 دارة التنبيه الصوتي:

٧. التغذية:

التغذية: 5V

VI. اختيار المنفذات والمنفذات المتصدرة: الأجهزة الكهربائية:

الخصائص	التحكم	النوع	الجهاز
متحرض: 220v- 1Ω محرض: Ω120- 0,5A	220v= KM3 ملامس	محرك تيار مستمر مستقل الحث	M3
U=220v/380v 480w 1A Cosφ=0,8 1460tr/mn	ملامسي التغذيـــة ~220v ملامس الاقــلاع النجمــي ~220v ملامسالاقـــلاع المثلـــثي ~24v		M2
أحادي القطبية مغناطيس دائم ذو قطبين 4 أطوار: SLOSYN MP	SAA1027	محرك خطوة-خطوة	M1

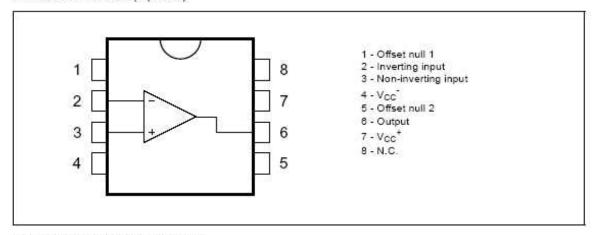
VII.الأسئلة A)التحليل الوظيفي:

- أكمل التحليل الوظيفي التنازلي (نشاط بياني 0-A) على وثيقة الإجابة صفحة 7.
 إنجاز ات تكنولوجية:
 - M_2 دارة الاستطاعة الموافقة الإجابة (صفحة 7) دارة الاستطاعة الموافقة للمحرك 2
- M_3 نريد ثقب قطع من معادن مختلفة هذا يستوجب تغيير سرعة دوران المحرك M_3 وذلك بتغيير توتر التغذية للمحرض.
 - a. أكمل رسم المقوم مستعملا التقويم بجسر قريتز (Graetz) بتحكم على وثيقة الإجابة صفحة 8 .
 - $t_R = 5 \text{ ms}$. على وثيقة الإجابة صفحة رقم 8. أكمل رسم إشارات المقوم إذا اعتبرنا : $t_R = 5 \text{ ms}$. التحليل المادى:
- T_2 و T_1 و لترانزستورين T_1 و T_1 و T_1 و التركيب أن التركيب أن
 - ر اعتمادا على وثائق الصانع للترانزستور ($T_1(2N2222A)$ وباعتبار : $R_1=10$ (شكل 4) معتمادا على وثائق المقاومة R_2
 - 6. التركيب شكل 5 صفحة 3 يحتوي على طابقين:
 - a. حدد وظیفة كل طابق منهما.
 - $v_1(t) = 0.5\sqrt{2}\sin \check{S}t$: إذا كان A التوتر في النقطة b
 - م أهو الشرط الواجب تحقيقه حتى نتحصل على التوتر في B يساوي التوتر في النقطة A مستعينا بوثائق الصانع للثنائي .
 - T_3 أين تكون نقطة الآستقرار السكوني للترانز ستور T_3 ، ولماذا نستعمل اترانز ستورين d
 - e. احسب مردود الطابق الثاني شكل و صفحة 3

D)التغذية

- 7. اعتمادا على مواصفات المحول TR_1 واعتبار أن: $P_f = 0.05 \ w$,. $P_f = 0.1 \ w$. التيار الثانوي الاسمى .
 - ٤. الليار التالوي الاسمي .
 - $\cos \varphi = 0.8$: مردود المحول من أجل التيار الاسمي ومعامل استطاعة . b
 - 8. أحسب القيمة المتوسطة للإشارة المقومة للسؤال رقم 3 6
 ل أجهزة الاستطاعة:
 - 9. نعتمد على لوحة المواصفات للمحرك: M₂ أحسب:
 - a. الاستطاعة الممتصة
 - b. عدد الأقطاب
 - c. الانزلاق.
- d. إذا كانت المقاومة بين طورين هي Ω Ω Ω وكانت الضياعات في حديد الساكن d.
 - احسب العزم المغناطيسي المنقول.
 - احسب الضياع بمفعول جول في الدوار.
 - e. بإهمال الضياعات الميكانيكية احسب مردود المحرك.
 - 10. اوجد عدد الدورات التي ينجزها المحرك خطوة خطوة لكي يتمكن من تقديم نظام التثقيب فوق مكان الثقب الثاني اذا كان التحكم بخطوة كاملة.

سلم التنقيط:


10س	س9	س8	س ₇	₆ س	<u>س</u>	4س	<u>س</u> 3	س2	س1	السؤال
1	6	1.5	2	3	1	1	2	1.5	1	النقطة
	20/20						المجموع			

VIII. وثائق الصانع

β	V _{CE} sat(v)	V _{BE} (v)	P(mw)
100	0.2	0.6	500

2. الدارة المندمجة: Ua 741

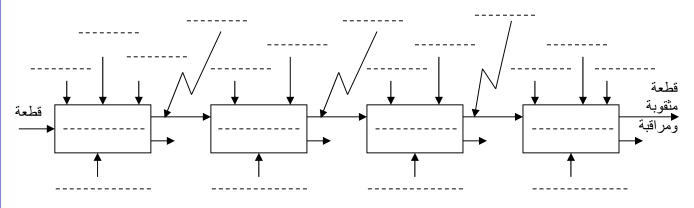
PIN CONNECTIONS (top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA741M	UA7411	UA741C	Unit
Vcc	Supply voltage	±22			٧
V _{ld}	Differential Input Voltage	±30			٧
Vi	Input Voltage	±15			V
Ptot	Power Dissipation 1)	500		mW	
	Output Short-circuit Duration		Infinite	40	
Toper	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage Temperature Range	-85 to +150		°C	

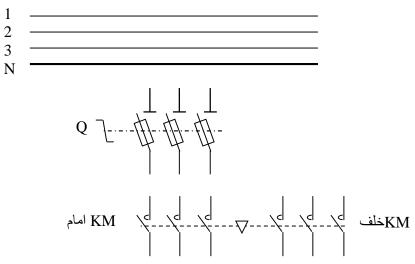
^{1.} Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.

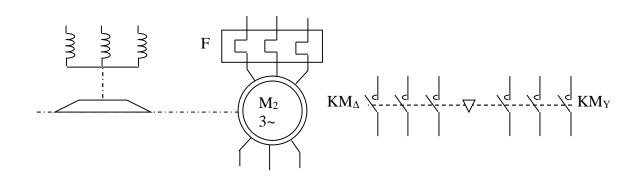
3. الثنائي: 1N4148

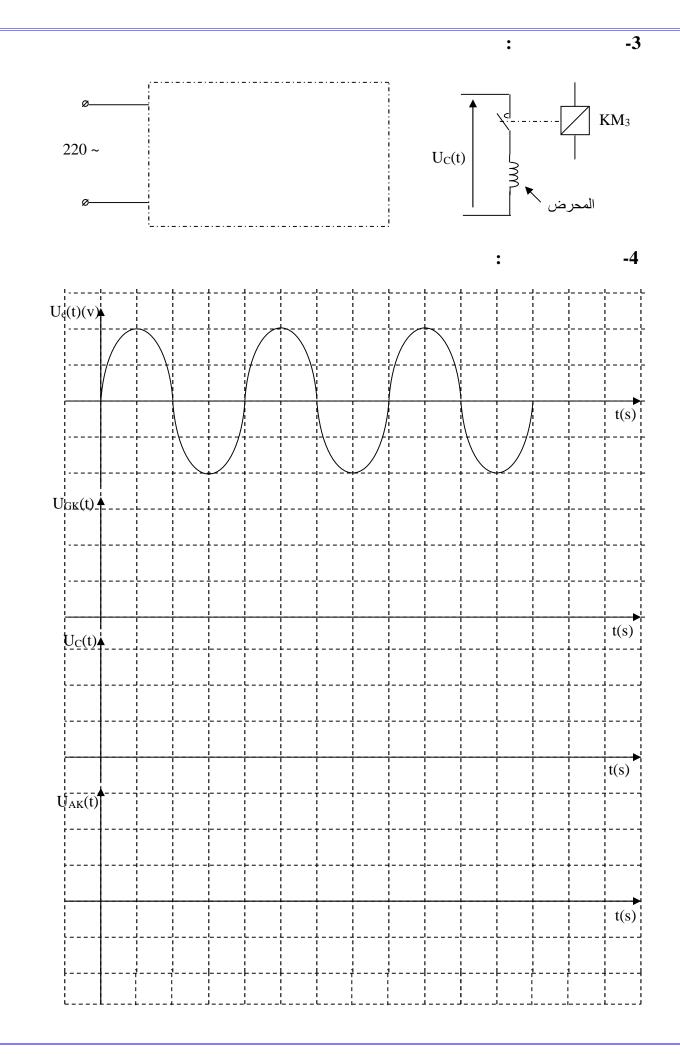

Parameter	symbol	1N4148	unit
Maximum forward voltage	V_{F}	1	V
Maximum forward current	I_{AV}	150	mA
Power dissipation	P _{TOT}	500	mw

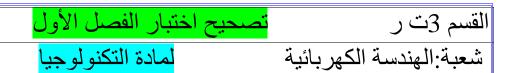
4. المحول

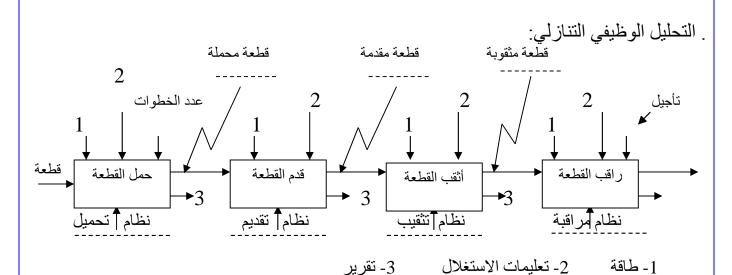
$U_{1n}(v)$	U ₂₀ (v)	S(va)
220	12	12

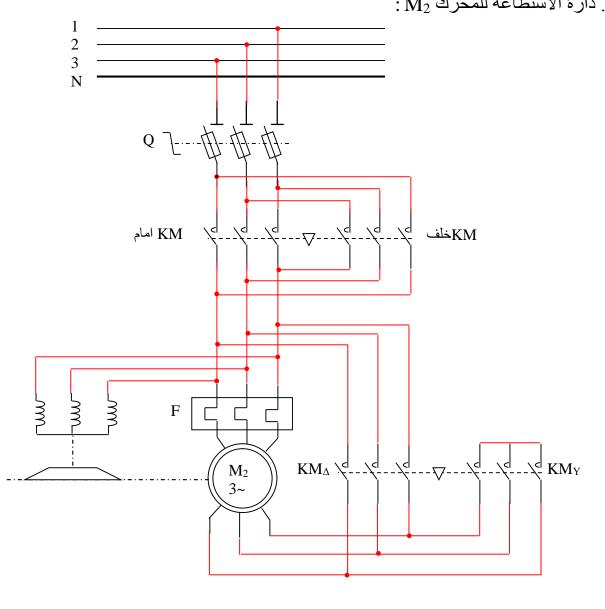

وثيقة الاجابة رقم1

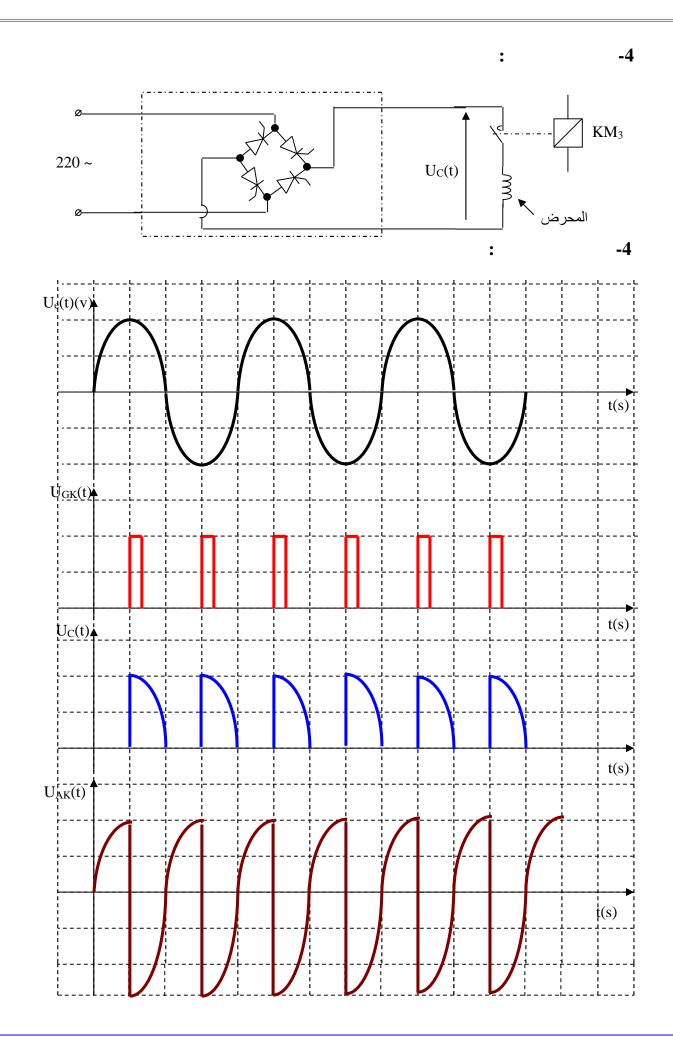

1. التحليل الوظيفي التنازلي:




1- طاقة 2- تعليمات الاستغلال 3- تقرير


2. دارة الاستطاعة للمحرك M2:





M_2 دارة الاستطاعة للمحرك M_2 :

 $V_{CE\;SAT}=0$ عندما $V_{CE\;SAT}=0$ عندما $V_{CE\;SAT}=0$ عندما $V_{CE\;SAT}=0$ عندما $V_{CE\;SAT}=0$ عندما $V_{CE\;SAT}=0$ عندما $V_{CE\;SAT}=0$ عندما $V_{CE\;SAT}=0$ عندما يؤدي إلى حصر الترانزستور $V_{CE\;SAT}=0$

عند وجود ثقب تحجب الاشعة عن اتر انزستور T_2 ليصبح في حالة حصر وتصبح الوصلة قاعدة باعث لتر انزستور $y{=}1$ مستقطبة في $v_{ce}=0$ الاتجاه المباشر $v_{ce}=0$ في حالة تشبع $v_{ce}=0$ ومنه $v_{ce}=0$

$$V_{CC} = L_2 I_2 + V_{CE SAT}$$

$$R_2 = \frac{V_{CC} - V_{BESAT}}{I_C} = \frac{V_{CC} - V_{BESAT}}{SI_B}$$

$$V_{CC} = R_1 I_B + V_{BE SAT}$$
: 5

$$I_B = \frac{V_{CC} - V_{BESAT}}{R_1} = \frac{5 - .06}{10^{-4}}$$

I = 4.4 10⁻⁴ A

$$R_2 = \frac{5 - 0.2}{100 \times 4.4 \times 10^{-4}} = \frac{4.8}{4.4} \times 100$$

$$\boxed{\mathbf{R}_2 = 108 \ \Omega}$$

 $a: \mathbf{6}$: وظيفة الطابق الأول : تضخيم الإشارات الضعيفة باستعمال مضخم عملي . b : وظيفة الطابق الثاني مضخم استطاعة صنف β

$$V_e = 100 \text{ I} + 10^3 \text{ I} + V_A \dots (1)$$

 $V_e = R \text{ I} = 100 \text{ I} \implies \text{I} = V_e/100 \dots (2)$

$$V_e = 100 \cdot \frac{V_E}{100} + \frac{10^3 \cdot V_e}{100} + V_A$$

$$V_e = V_e + 10V_e + V_A$$

$$V_A = -10 V_e$$

$$|V_A| = 10 \times 0.5 \times \sqrt{2} = 5 \times \sqrt{2}$$

$$|V_A| = 5 \times \sqrt{2}.V$$

 D_1 أن يكون التوتر V_{be} للتر انزستور يساوى توتر عتبة الثنائى V_{be} : c

 $(I_b=0)$: تكون نقطة الاستقرار السكوني للترنزستور T_3 في منطقة الحصر و d ونستعمل ترانزستورين متكاملين ليضخم كل واحد منها نوبة .

e: حساب المردود:

$$y = \frac{f}{4} \frac{V_{B.MAX}}{E} = \frac{f}{4} \frac{V_{A.MAX}}{E}$$
$$y = \frac{f}{4} \frac{5.\sqrt{2}}{15} = \frac{3.14 \times 5 \times \sqrt{2}}{4 \times 15}$$

$$y = 26.16\%$$

$$S = U_{20}.I_{2n}$$
 :a :7

$$\Rightarrow I_{2n} = \frac{S}{U_{20}} = \frac{12}{12} = 1A$$

$$y = \frac{P_u}{P_a} = \frac{P_a - P_f - P_j}{P_a} = \frac{P_u}{P_u + P_f + P_j} = \frac{U_{20}I_{2n}\cos\{}{U_{20}I_{2n}\cos\{+P_f + P_j\}}$$
 :b
$$y = \frac{12 \times 1 \times 0.8}{12 \times 1 \times 0.8 + 0.05 + 0.1} : \xi. \text{ } \therefore \text{ } y = 98 \%$$

$$V_{moy} = \frac{V_{max}}{f} (\cos \tilde{S}t_r + 1)$$

$$V_{max} = 220\sqrt{2} = 311v$$

$$w = 2ff = 2f 50 = 314 \cdot \frac{rd}{s}$$

$$V_{moy} = \frac{311}{3.14} (\cos 314 \times 5 \times 10^{-3} + 1)$$

$$V_{moy} = 180 \text{ V}$$

$$P_a = \sqrt{3}.U.I.\cos{\{}$$
 :a: 9

$$P_a = \sqrt{3.220.1} = 374 w$$

 $n_s = \frac{60 f}{p} \Rightarrow p = \frac{60 f}{n_s}$: b
 $p = \frac{60 \times 50}{1500} = 1$

$$g=rac{n_s-n}{n_s}=rac{1500-1460}{1500}=rac{40}{1500}=2.6\%$$
 $g=2.6\%$ $P_{tr}=C_{tr}$. $\Omega_{\rm S}$.

$$\Rightarrow C_{tr} = \frac{P_{tr}}{\Omega_{s}} = \frac{60.P_{tr}}{2fn_{s}}$$

$$\Rightarrow C_{tr} = \frac{60.(9a - p_{fs} - p_{js})}{2fn_{s}}$$

$$\Rightarrow C_{tr} = \frac{60.(374 - 6 - p_{js})}{2f.1500}$$

$$p_{js} = \frac{3}{2}rI^{2} = \frac{3}{2}0.24 = 0.36w$$

$$\Rightarrow C_{tr} = \frac{60.(374 - 6 - 0.36)}{2f.1500} = 2.34N.m$$

$$C_{tr} = 2.34N.m$$

$$p_{jr} = g.(p_{a} - p_{fs} - p_{js})$$

$$p_{jr} = 9.55w$$

$$y = \frac{p_{u}}{p_{a}} \qquad :e$$

$$y = \frac{p_{u} - p_{fs} - p_{js} - p_{jr}}{p_{a}}$$

$$y = \frac{374 - 6 - 0.36 - 9.55}{374}$$

$$y = 95.7\%$$

: المحرك خطوة خطوة ذو مغناطيس دائم احادي القطبية اربعة اطوار . عدد الخطوات = 4 خطوات = 4 خطوات = 4 خطوات = 4 خطوات $= \frac{30}{4}$ عدد الدورات $= \frac{30}{4}$ = 7.5 دورة