الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: ماي 2015

ثانويات: الجديدة، الدبيلة، الزقم، حاسي خليفة

الشعبة: علوم تجريبية

امتحان بكالوريا التعليم الثانوي التجريبي الموحد

المدة: 03 ساعات ونصف

x (mmol)

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $_{\rm s}$ يعتبر تفاعل أكسدة شوارد اليود $_{\rm I}^{-1}$ بواسطة شوارد البيروكسوديكبريتات $_{\rm S}^{20}$ تفاعل بطيء و تام

$$S_2O_{8(aq)}^{2-} + 2I_{(aq)}^{-} = 2SO_{4(aq)}^{2-} + I_{2(aq)}$$
 : ننمذج هذا التفاعل بالمعادلة

عند $C_1=0.2~{
m mol/L}$ من محلول يود البوتاسيوم ($k_{(aq)}^+,I_{(aq)}^-$) تركيزه $V_1=40~{
m mL}$ مع حجم عند t=0

. C_2 من محلول بيروكسوديكبريتات البوتاسيوم ($2k_{(aq)}^+,~S_2O_{8(aq)}^{2-}$) تركيزه المولي $V_2=40~{
m mL}$

 $[{
m I}_2]_{
m f}=0{,}025~{
m mol/L}$ هو المزيج هو نجري معايرة لثنائي اليود في نهاية التفاعل، نجد أن تركيزه في المزيج

1-أنشئ جدول التقدم.

. C_2 أحسب التقدم الأعظمي ، ثم استنتج المتفاعل المحد و قيمة التركيز -2

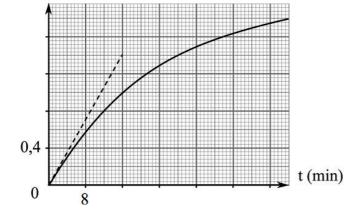
3-البيان المقابل يمثل تطور تقدم التفاعل مع الزمن.

أ. جد زمن نصف التفاعل .

ب. أحسب السرعة الحجمية للتفاعل عند t=0.

4-بفرض أننا حققنا التفاعل السابق في نفس درجة الحرارة

و بنفس المقادير لكن نستعمل محلول يود البوتاسيوم


 $.C_1' = 0,4 \text{ mol/L}$ ترکیزه

هل تتغير المقادير التالية مع التعليل:

أ. التقدم الأعظمي .

ب. زمن نصف التفاعل.

ج. السرعة الحجمية الابتدائية للتفاعل .

التمرين الثانى: (04 نقاط)

1jour = 24 h , 1an = 365,25 jours , $N_A = 6,02.\,10^{23}$ mol $^{-1}$, $t_{\frac{1}{2}}(^{137}_{\rm Z}Cs)=30$ ans : المعطيات 0,22 Bq خليب الأبقار يحوي نظير السيزيوم $^{137}_{\rm Z}Cs$ ذي نشاط اشعاعي من رتبة $^{0}_{\rm Z}Cs$ لكل لتر . نفرض أن النشاط الاشعاعي للحليب راجع فقط للسيزيوم $^{137}_{\rm Z}Cs$.

1- ماذا يمثل 1 بيكرل (1Bq).

. N في لحظة t و عدد الأنوية المشعة A . ذكر بالعلاقة بين النشاط A في لحظة t و عدد الأنوية المشعة -2

 $\lambda = \frac{\ln 2}{t_{1/2}}$ استنتج قيمة ثابت النشاط الاشعاعي $\lambda = \frac{\ln 2}{t_{1/2}}$ النشاط الاشعاعي $\lambda = -3$

 (S^{-1}) و بالـ (an^{-1})

. التواريخ (t=0) لحظة قياس القيمة 0.22 Bq لنشاط لتر من الحليب -4

أ. حدد عدد الأنوية الابتدائية للسيزبوم 137.

ب. استنتج التركيز المولى الابتدائي للسيزبوم 137.

ج. أحسب بالسنة (ans) الزمن اللازم لبلوغ النشاط % 1 من قيمته الابتدائية .

التمرين الثالث: (04 نقاط)

ننجز الدارة الكهربائية الممثلة في الشكل المقابل و المكونة من:

- مولد مثالي للتوتر قوته المحركة الكهربائية E .

- مكثفة غير مشحونة في البداية سعتها C .

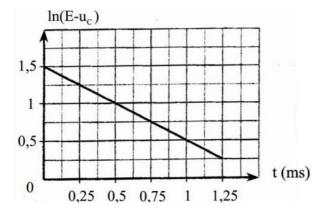
. $R = 100\Omega$ ناقل أومي مقاومته

- قاطعة (K).

نغلق القاطعة عند لحظة نختارها أصلا للتواريخ t=0

. جد المعادلة التفاضلية التي يحققها التوتر $U_{
m C}$ بين طرفي المكثفة .

للمعادلة التفاضلية $U_C=A(1-e^{-\frac{t}{\tau}})$ للمعادلة التفاضلية -2 حيث τ ثابت الزمن للدارة و A ثابت موجب .


أ. جد عبارتي A و au بدلالة مميزات الدارة .

 $\ln(E - U_c) = -\frac{1}{\tau}.t + \ln(E)$ بن أن: $t + \ln(E)$

3- يعطى المنحنى الممثل في الشكل المقابل تغيرات

.t بد النم الرحد $\ln(E-U_c)$ المقدار

au باستغلال البيان جد قيمتي كل من au و au

 $t=\tau$ للطاقة المخزنة في المكثفة عند اللحظة $E_{\rm C}$ للطاقة المخزنة في المكثفة

. $\frac{E_{C}}{E_{C(max)}}$ للطاقة الأعظمية المخزنة في المكثفة. أحسب قيمة النسبة $E_{C(max)}$

5- نركب مع المكثفة السابقة مكثفة أخرى مماثلة للأولى في السعة، وضح كيفية تركيب المكثفتين (على التسلسل أو على التفرع) لتحقيق عملية شحن خلال مدة أكبر من مدة الشحن في التجربة الأولى.

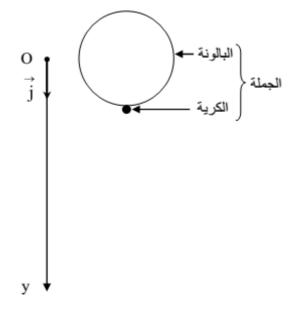
التمرين الرابع (04 نقاط)

 $M(CH_3COONa) = 82g/mol$ المعطيات: الكتلة المولية لايثانوات الصوديوم $K_e = 1.10^{-14}$. $K_e = 1.10^{-14}$ القياسات تتم عند $M(CH_3COONa) = 82g/mol$ و التي فيها الجداء الشاردي للماء

نذيب كتلة m = 410 mg من بلورات ايثانوات الصوديوم في الماء المقطر للحصول على محلول مائي غير مشبع S_1 حجمه V=500 mL و تركيزه C_1 نقيس C_1 المحلول C_1 فنجده C_1 فنجده C_1 و تركيزه C_1 فنجده C_1

 C_1 أحسب التركيز -1

-2


- أ. أكتب معادلة التفاعل بين شوارد الايثانوات -CH₃COO و الماء .
- . au_{f_1} و PH م أحسب au_{f_1} للتفاعل بدلالة au_{f_1} و au_{f_1} أحسب au_{f_1} .
 - -3
 - . k عبر عن ثابت التوازن κ للتفاعل بدلالة τ_{f_1} و عبر عن ثابت التوازن
 - (CH_3COOH/CH_3COO^-) ب. استنتج قيمة ثابت الحموضة K_a للثنائية
 - لتفاعل شوارد au_{f_2} أخر لايثانوات الصوديوم تركيزه au_{f_2} au_{f_3} هل نسبة التقدم النهائي au_{f_2} لتفاعل شوارد -4 لايثانوات و الماء في المحلول au_{f_2} مساوية، أكبر أم أصغر من au_{f_1} ويطلب تعليل الإجابة .

التمرين التجريبي (04 نقاط)

ندرس حركة سقوط بالونة منفوخة حجمها V ومثقلة بكرية معدنية حجمها مهمل أمام V .نصور فيديو الحركة بكاميرا رقمية .بواسطة برمجية معلوماتية نستثمر فيديو الحركة نختار فيها موضع مركز البالونة في لحظة ترك الجملة t=0 تسقط كمبدأ لمحور (v, y) شاقولي و موجه نحو الأسفل .

تعطى النتائج التجريبية التالية للدراسة:

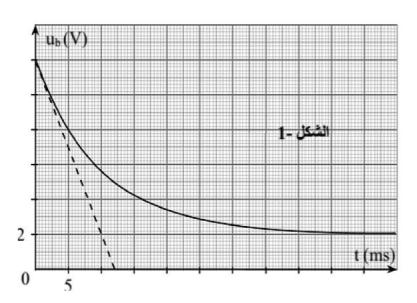
- الحركة انسحابية شاقولية.
- السرعة الحدية (في النظام الدائم) $v_{
 m l}=2{,}75~{
 m m/s}$
- الاحتكاك مع الهواء متناسب مع مربع السرعة.

المعطيات : كتلة الجملة (بالونة +كرية) m=10,7 g محجم البالونة V=3,05 L

. $g = 9.81 \text{m/S}^2$ الجاذبية الأرضية $\rho = 1.20 \text{ g/L}$: الكتلة الحجمية للهواء

- الهواء k المعامل التناسب بين قوة الاحتكاك مع الهواء k المعامل التناسب بين قوة الاحتكاك مع الهواء ومربع السرعة)
 - . العطالة مركز العطالة التفاضية التي تحققها القيمة $v_{
 m G}$ لسرعة مركز العطالة.
- . $\frac{\mathrm{d}\,v_\mathrm{G}}{\mathrm{dt}} = \mathrm{A} \mathrm{B}.\,v_\mathrm{G}^2$ عبارتيهما الحرفيتين A . $\frac{\mathrm{d}\,v_\mathrm{G}}{\mathrm{dt}} = \mathrm{A} \mathrm{B}.\,v_\mathrm{G}^2$
 - . A مع تحدید وحدة A = 6,45 .
 - 5- أحسب قيمة B ثم استنتج قيمة B .
 - 6- يمثل الجدول المقابل بعض القيم المتحصل عليها في اللحظات الأولى للحركة : أحسب كلا من a_1 و
 - T(s) v (m/s)
 a (m/s²)

 0,00 0,00 6,45


 0,08 0,51 5.60

الموضوع الثاني

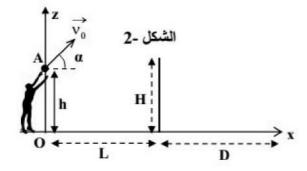
التمرين الأول (04 نقاط)

تتكون دارة كهربائية على التسلسل من : مولد للتوتر قوته المحركة الكهربائية E , E , E , E , E , E مقاومته E , E و قاطعة E . نغلق القاطعة E في اللحظة E و بواسطة راسم الاهتزاز المهبط ذي ذاكرة نشاهد التمثيل البياني E . E

- 1- أرسم الشكل التخطيطي للدارة الكهربائية موضحا
 عليها كيفية ربط راسم الاهتزاز المهبطي.
- -2 باستخدام قانون جمع التوترات ، بين أن المعادلة $U_b(t)$ التفاضلية $U_b(t)$ بين طرفي الوشيعة تكون على الشكل : $\frac{dU_b}{dt} + \frac{(R+r)}{L}U_b = \frac{r}{L}E$

- $U_{b}(t) = \frac{RE}{R+r} e^{-\frac{(R+r)}{L}.t} + \frac{rE}{R+r}$: بين أن المعادلة التفاضلية السابقة تقبل حلا من الشكل -3
 - 4- بالاستعانة بالبيان جد:
 - . قيمة القوة المحركة الكهربائية للمولد E .
 - ب. قيمة المقاومة الداخلية للوشيعة r.
 - ج. قيمة ثابت الزمن au، ثم استنتج L قيمة ذاتية الوشيعة .
 - 5- أحسب قيمة الطاقة الكهربائية المخزنة في الوشيعة في حالة النظام الدائم.

التمرين الثاني (04 نقاط)


خلال منافسة كرة الطائرة، يقفز رياضي و يرمي الكرة من نقطة A الواقعة على ارتفاع h=3,5~m بالنسبة لسطح الأرض خلال منافسة كرة الطائرة، يقفز رياضي و يرمي الكرة من نقطة $\alpha=7^\circ$ مع الخط الأفقي. على الكرة أن تجتاز شباكا علوه بسرعة ابتدائية $v_0=18~m/s$ و تسقط في منطقة الخصم $\sigma=7^\circ$. D و تسقط في منطقة الخصم m=2,43~m

البعد بين اللاعب و الشباك هو L=12 m الشكل-2

ندرس حركة الكرة التي نفرضها نقطية في المعلم المتعامد و المتجانس (Ox , Oz) و نختار اللحظة الابتدائية t=0 هي اللحظة التي يتم فيها قذف الكرة من النقطة A .

نهمل احتكاكات الكرة مع الهواء و دافعة أرخميدس بالنسبة لقوة ثقل الكرة .

z=f(t) و x=f(t) و x=f(t) و x=f(t) و x=f(t) و x=f(t) المميزتين لحركة الكرة في المعلم المختار ، ثم استنتج معادلة مسار الكرة x=f(x) .

- 2- ماهي المدة الزمنية المستغرقة حتى تمر الكرة فوق الشباك ؟ على أي ارتفاع من الشباك تتواجد الكرة حينئذ
 - 3- جد قيمة سرعة الكرة لحظة مرورها فوق الشباك. ماهو منحى شعاع السرعة حينئذ؟ .
 - $g = 10 \text{m/s}^2$ يعطى

التمرين الثالث (04 نقاط)

أحد تفاعلات الانشطار الممكنة لليورانيوم $^{235}_{92}U$ عند قذفه بنيترون في مفاعل نووي يعمل بالماء المضغوط (R.E.P) نعبر عنه بالمعادلة التالية : $^{235}_{92}U + ^{1}_{0}n \longrightarrow ^{131}_{53}I + ^{99}_{v}Y + x^{1}_{0}n$

- -1 أكمل معادلة التفاعل النووي أعلاه .محددا قوانين الانحفاظ المطبقة .
- 2- ماذا تتوقع حدوثه لو لا يتم مراقبة التحول بفصل النيترونات المحررة ؟.

-3

- أ. أحسب Δm النقص في الكتلة خلال هذا التحول .
- ب. أحسب $E_{
 m lib}$ الطاقة المحررة من انشطار نواة واحدة من اليورانيوم $^{235}_{
 m eq}$
- $^{235}_{\mathrm{mir}}$ ج.استنتج $^{235}_{\mathrm{lib}}$ الطاقة المحررة من انشطار $^{235}_{\mathrm{mir}}$ من اليورانيوم
- $E_{\mathrm{P}} = 42\mathrm{MJ}$ بترول و الذي ينتج طاقة E'_{lib} بترول و الذي ينتج طاقة المحررة من

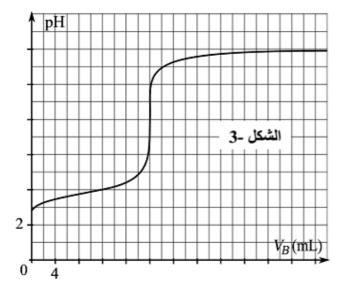
$$m(^{99}Y) = 98,9278u$$
 $m(^{131}_{53}I) = 130,90612u$ $m(^{235}_{92}U) = 235,04392u$

$$N_A = 6.02 \times 10^{23} \,\text{mol}^{-1}$$
 $1u = 931.5 \,\text{MeV} / \,\text{c}^2$ $m(_0^1 n) = 1.00866 u$

التمرين الرابع (04 نقاط)

يعتبر حمض الميثانويك HCOOH من الأدوية الناجعة لمحاربة بعض الطفيليات التي تهاجم النحل .نهدف الى دراسة تفاعل حمض الميثانويك مع الماء و مع محلول هيدروكسيد الصوديوم .

 $V_0 = 2mL$ ثم نكمل بالماء $V_0 = 2mL$ من حمض الميثانويك تركيزه المولي S_a في حوجلة سعتها $V_0 = 2mL$ ثم نكمل بالماء المقطر الى غاية خط العيار فنحصل على محلول متجانس S_a تركيزه المولي S_a و ناقليته

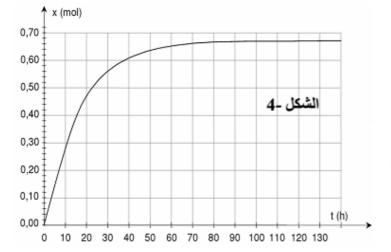

$$\delta = 5.10^{-2}$$
S/m النوعية

- أ. أكتب معادلة تفاعل حمض الميثانويك مع الماء .
 - C_a بين التركيزين C_0 و C_0
 - ج. أحسب قيمة الـ pH للمحلول . S
 - S_a نعاير حجما $V_a=20 \mathrm{mL}$ من المحلول -2 بواسطة محلول هيدروكسيد الصوديوم

ترکیزه المولي (
$$Na_{(aq)}^+ + OH_{(aq)}^-$$
) ترکیزه المولي

$$. C_{b} = 1.10^{-1} \text{mol/L}$$

يعطي المنحني البياني الشكل-3 تطور pH المزيج بدلالة $V_{\rm b}$ حجم محلول هيدروكسيد الصوديوم المضاف.


- أ. أكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث أثناء المعايرة .
- - ج. أحسب k قيمة ثابت التوازن لهذا التفاعل , ماذا تستنتج .

$$\lambda_{(H_3O^+)}=35 \text{mS.m}^2.\text{mol}^{-1}$$
 ' $\lambda_{(HCOO^-)}=5,46 \text{mS.m}^2.\text{mol}^{-1}$.
 $K_e=10^{-14}$: الجداء الشار دي للماء

التمرين التجريبي (04 نقاط)

1- (E) نوع كيميائي عضوي صيغته نصف المفصلة:
 ما طبيعة النوع الكيميائي (E) و ما اسمه ?

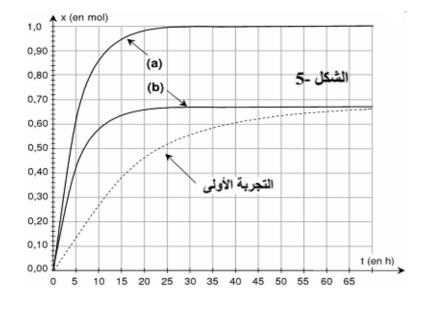
(B) مع اللحظة t=0 و في درجة حرارة ثابتة اt=0 من حصض عضوي (E) مع اللحظة t=0 من كحول (B) مع اللحظة t=0

- متابعة كمية مادة الحمض المتبقي بدلالة الزمن مكنتنا من رسم البيان x=f(t)
- أ. أكتب الصيغة نصف المفصلة لكل من (A)
 و (B) ،سم كل منهما .
- ب. أكتب معادلة التفاعل المنمذج للتحول الحادث.
 - ج. أحسب مردود التفاعل عند التوازن .
 - د. أحسب K قيمة ثابت التوازن .

3- نحقق تجربتين مماثلتين للتجربة الأولى:

التجرية (2) : نمزج mol من (A) مع 1mol من

(B) بوجود قطرات من حمض الكبريت المركز.

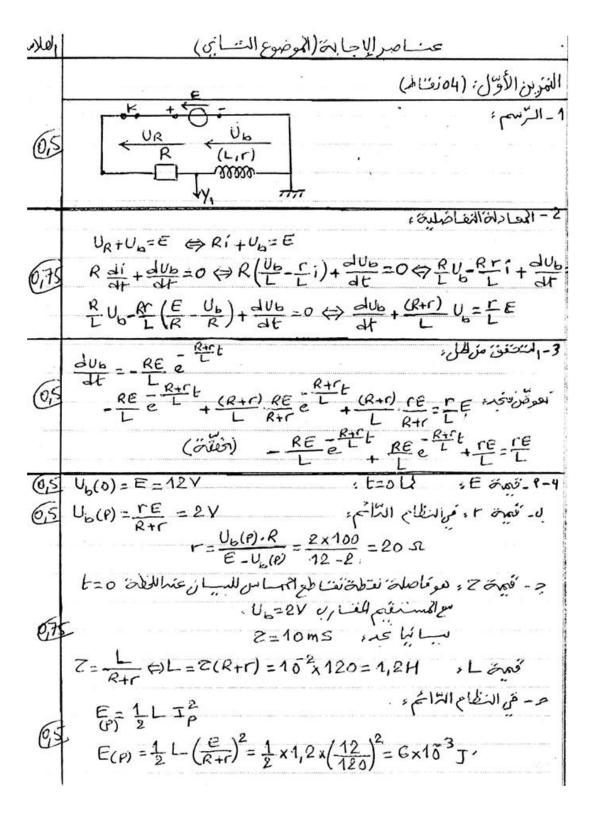

التجرية (3) : نمزج 1mol من (A) مع 1mol من

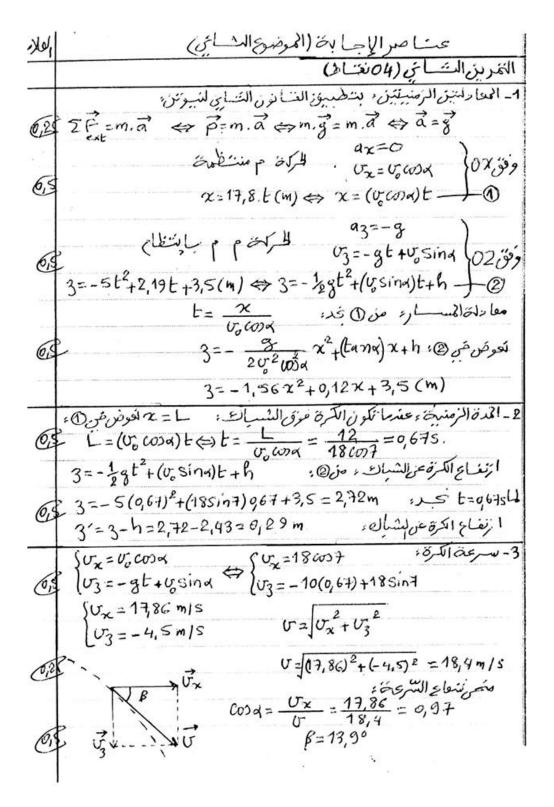
(B) مع نزع الماء المتشكل .

نتحصل على المنحنيين (a) و (b) . الشكل-5

أرفق المنحنيين (a) و (b) بالتجربتين (2) و (3) مع

التعليل.

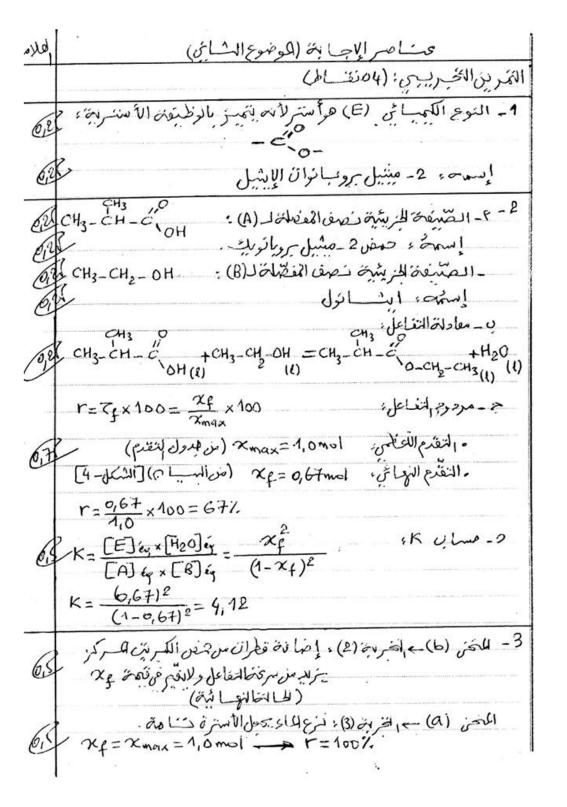

2000	وذج إجابة الموضوع الأوّل - بكالوريا تجريبية - علوم فيؤياميَّة	
C	مديث الأمولال:	71
95	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	$n_{\xi}(I_{z}) = CI_{z}I_{\xi} \cdot Y_{\tau} \qquad \text{(orke)}$ $x_{\xi} = x_{max} = n_{\xi}(I_{z}) = 0,02(x \ 80 \ mL = 2 \ mmol)$	2
1,5 G	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$C_2V_2 - X_3 = 0 \Rightarrow C_2 = \frac{\lambda_5}{V_2} = \frac{2 \text{ mod}}{40 \text{ mL}}$ $\Rightarrow C_2 = 0.05 \text{ mod/L}$	
	في النفاعل: بيانيًا: 16 min المينانية على المين النفاعل المينانية المينانية المينانية المينانية المينانية المين	-13
16	$9(0) = \frac{1}{V_{T}} \cdot \frac{dx}{dt} \Big _{0}$ $9(0) = \frac{1}{0.08L} \cdot \left(\frac{1.4-0}{16-0}\right) \simeq 1.1 \text{ mmol. L.}^{1} \text{ min.}^{1}$	-ų-
16	اكمنا قسة عندما : ٢٠٠٤ ما ٢٥ عندما الله قد الله الله الله الله الله الله الله الل	4


05 05	شمرين الثّنا نيه: البيكرل <u>189:</u> يُمثّل 189 تَفكُلُا واحد في عينّه هشتعة خلال تاليّه واحدة.	0
0,25	$A = A_0 e^{-\lambda t}$ التناقص في $A = A_0 e^{-\lambda t}$	æ)
6 625	العلاقة بين A و N في لحظة غ : A = λ.N	
95	يرَسن نصف العمر علا ي عو المدة اللازمة لتنافُّص الشاط إلرالنم	3
1,5 95	$A = A_0 e^{\lambda t_{1/2}} = A = A_0 e^{\lambda t_{1/2}} = A = A_0 e^{\lambda t_{1/2}} = A_0 e^{\lambda t_{1/2}} \Rightarrow A = A_0 e^{\lambda t_{1/2}} \Rightarrow A = A_0 e^{\lambda t_{1/2}} \Rightarrow A_0 = $	
(2)25 (2)25	$\lambda = \frac{0.693}{30 \text{ an}} \approx 2.3 \times 10^{2} \text{ an}^{-1}; \lambda = \frac{0.693}{30 \times 365.15 \times 24 \times 36005} \stackrel{?}{\sim} \frac{\lambda}{7.3 \times 10^{10}} = \frac{1}{30 \times 365.15 \times 24 \times 36005}$	
95	$A_o = \lambda N_o \Rightarrow N_o = \frac{A_o}{\lambda} = \frac{0.22}{7.3 \times 10^{-10}} \approx 3 \times 10^8 \text{ noyaux}$	-t@
16 65	$C = \frac{N}{V} = \frac{N}{N_0 \cdot V} = \frac{3 \times 10^8}{6.02 \times 10^{23} \times 1} \sim 5 \times 10^{-16} \text{ mol/L}$	- Ų-
65	$A = A_0 e^{-\lambda t} \Rightarrow \frac{A_0}{A} = e^{\lambda t} \Rightarrow \lambda t = \ln(\frac{A_0}{A})$ $\Rightarrow t = \frac{1}{\lambda} \cdot \ln(\frac{A_0}{A}) \Rightarrow A = \frac{A_0}{100} \Rightarrow \frac{A_0}{A} = 100$ $t = \frac{1}{2.3 \times 10^{-2} an^{-1}} \times \ln 100 \approx 2 \times 10^{2} an$	

c	سَمرين الثّالت :	JI
10	$E = U_c + U_R = U_c + Ri = U_c + R \cdot \frac{dq}{dt}$ $E = U_c + R \cdot \frac{d(C.U_c)}{dt} = U_c + RC \cdot \frac{dU_c}{dt}$ $\frac{dU_c}{dt} = \frac{E}{RC} - \frac{1}{RC} \cdot U_c \cdot \cdot$	0
10	$U_{\varepsilon} = A(1 - e^{t/\varepsilon}), \frac{dU_{\varepsilon}}{dt} = \frac{A}{\varepsilon} e^{t/\varepsilon} = \frac{1}{\varepsilon} \cdot A \forall j \text{ interpolation in the polarization of } A e^{t/\varepsilon} = \frac{E}{RC} - \frac{A}{RC} \left(1 - e^{t/\varepsilon}\right) \text{interpolation in the polarization of } A e^{t/\varepsilon} \left(\frac{1}{\varepsilon} - \frac{1}{RC}\right) = \frac{1}{Rc} \left(E - A\right)$ $1 in the purity emitting energy in the purity and it is the purity and it$	-f-@
	$ \ln(E-u_c) = -\frac{1}{2} \cdot t + \ln E \cdot \sin u \sin \cos u $ $ u_c = E(1 - e^{-t/c}) \Rightarrow u_c = 1 - e^{-t/c}$ $ v_c = E(1 - e^{-t/c}) \Rightarrow u_c = $	-ų-
100	المن المن المن المن المن المن المن المن	3
O ₁ S	$000 = \frac{1/2 \cdot C \cdot (0/63E)^2}{E_{c,mqx}} = \frac{1/2 \cdot C \cdot (0/63E)^2}{1/2 \cdot C \cdot E^2} \approx 0.4 \approx 40\%$ $0000 = \frac{1/2 \cdot C \cdot (0/63E)^2}{E_{c,mqx}} \approx 0.4 \approx 40\%$ $00000000000000000000000000000000000$	(g)
96	يجب أكن يكون عرف المركب المتكون على المركب أب C'>C وذ الراء يستوجب ربط (المكتفين على النفرة على النفوة على المتكفين على النفوة على النفوة على التوكيبة ذات سعة مكافئة أكبر).	

(4	مرين الرابع !	التُ
0,5	65	$C_1 = \frac{n}{V}$; $n = \frac{m}{M} \Rightarrow C_1 = \frac{m}{MV}$ $\frac{C_1}{82 \times 0.5} = \frac{c_1 + c_2}{82 \times 0.5} = \frac{c_1 + c_2}{m} = c_1 + $	@
	695	معادلة النفائل ؛ CH3COO (aq) + HO (aq) + HO (aq) عادلة النفائل ؛	-t-®
ŀ		نسبة النفائم النهائي ٢٠٠	- <i>ų</i> -
'		CH3COO+ H2O = CH3COOH + HO	
	65	E.I C ₁ V 0 0	
1,5		EInt CaV-X X X	
1,5		E.F CaV-xe / xe xe	
+	1		1
	(as	2 - Ko. 2 - K. 10 PH	
		$\mathcal{Z}_1 = \frac{K_e}{C_1}$ \Rightarrow $\mathcal{Z}_1 = \frac{K_e}{C_1}$	
	625	. 2 = 1014 × 108,4 ~ 2,5 × 104 : 2,10 ho	
	B	1 10-2	
Ħ		ثابت التوازن كا؛	1-3
	(as)	[CH.COOH] [Hi] (24)2 C 22	
H		$K = \frac{[CH_3C00H]_{\xi} \cdot [H\tilde{0}]_{\xi}}{[CH_3C00]_{\xi}} = \frac{(\frac{\chi_{\xi}}{V})^2}{C_1V - \chi_{\xi}} = \frac{C_1\chi_{\xi}^2}{1 - \chi_{\xi}}$	
15			-
45	65	K = 102 (2, (x104)2 ~ 6,3 x1,0-10 ! K clus	
	3	1-25×104	1
		لا = [CH3COOH] ع [HO] و [Ho] و [Ka قب عن الحوضة Ka عن المحدوضة الم	L1)-
	(as	Etyotje	
	9	$\Rightarrow K = \frac{Ke}{Ka} \Rightarrow K_a = \frac{Ke}{K} = \frac{10^{-14}}{6,3\times10^{-10}} \simeq 1,6\times10^{-5}$	
		Ka K 6,3×10 ⁻¹⁰	
I		المقارنة بين مي ويي إ	4
0,5	015	نسبة المقدّ م النهام تدون أكبر في المحاليل الممدة .	
Ċ		بعا أن الله الله الله الله الله الله الله الل	-

64		موين الرّجوب بي :	الهت
		سارات العرفية للقويل!	الع
	P = m.g	تُقل الجِلة :	
01 620	TT = 9. V. g	دا فعق أرتميدس:	
(Sel	f = 12. vg	الاحتكاك مع الهواء:	
		عادلة النفاضلية لِه الله الما	ال_
		مُطِيعة القانون التَّاني لليوتن !	
95 65		الاستفاط على (٧٥):	
	$\Rightarrow mq - svg - kvz^2 = \frac{dva}{dt} = g(1 - \frac{sv}{m}) - \frac{dva}{dt} = \frac{g(1 - \frac{sv}{m})}{2} - \frac{gv}{m}$	K va	
95 95 3	<u>dva</u> dt - dt = 4-Bv2 : خبن الا dt	A - 8 2 + 3 = A - 8 2 + 3 = A - 8 2 = A - 8 2 = A = 9 (1 - 2 - 2 - 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	<u>Ji</u> (3)
वर् वर		مع تعدید ا مع تعدید ا مع تعدید ا مع اله ۱٬28/2 × (45 m/s2 مع تعدید ا مع اله ۱۵٬۶۲۶ مع تعدید ا	<u> </u>
(6)		ساب <u>B</u> : في النظام الدائم: إذ ن البعادلة النفاضلية السالقة	<u>-</u>
c1 (C)		45m/s ² '= 0,853 m ⁻¹	
95	$K = B.m = 0,853 \times 10,$	7 = 9,13 g/m K = 12 = 7	ā l
. 65	n - d191 a 2	<u>: عمر بالسا</u>	<u> </u>
6		32 = 6,45-0,853(0,51)2 = 6,22 m/s2	
65	$a_2 = \frac{dv}{dt}\Big _{t_2} = A - \frac{1}{2}$ $\Rightarrow v = A - \frac{1}{2} = A - \frac{1}{2$	βv_2^{ℓ} $\frac{v_2}{\sqrt{\frac{6,45-5760}{0,853}}} \simeq 1 m/s$	*



ألعلامة	عتاصرالإحابة (الوضوع النياني)
Œ.	ا في المعادلة: التطبيق في المؤتى الإنجف الأ. ا في الله المعادلة: التطبيق في المؤتى الإنجف الأ. ا في الله المنافذ عدة والمراكة: عنه 230 و منه 236 عنه عنه المواكنة عنه 230 عنه عنه المواكنة عنه المواكنة عنه المواكنة عنه المواكنة
0,5	2-،5-10 نفاعل منسلسل.
OF 4	om=m;-mf , Δm - μ-3 om=(235,04392+1,00866)-(130,90612+98,9278+6,0519)
17	Sm = 0,1667U = Elib = Sm x C ² = 0,1667x 931,5 = 155,28 MeV = Elib = 0,1667x 931,5 = 155,28 MeV
1	$E_{lib} = N \times E_{lib}$ $E'_{lib} = \frac{m}{M} N_{A} \times E_{lib}$ $E_{lib} = \frac{4000}{235} \times 602 \times 10^{3} \times 155,28 = 3,98 \times 10^{6} \text{ MeV}$ $= 6,36 \times 10^{3} \text{ T}$
(0,E) -	= $6,36 \times 10^{\frac{7}{4}} \text{ Mz}$

```
العلامة
                                                                                                عسا صرالا سابق (الموضوع السّان)
                                                                                                                                                           التمرين الإمايع: (40 نف ط)
                                                                                                   ١١٩- معادية تفاعل جقن المبلك توبات موالماء.
                                                                  HCOOH (ay) + H20 = HCOO (ag) + H30+ (ag)
                                                                                                                                                         6-16KBS 100 5 6 ADS
        65 CoVo = CAV A CO = V = 100 = 50
                                                                                                         Co=50. CA : ow,
                                                                                                                                                       · (SA) do Hallowi - P.
                      6=[4309]. AH30++[4000]. AH000
      G = [H_30f] (\lambda_{H_30f} + \lambda_{HC00})
[H_30f] = \frac{5 \times 10^2}{\lambda_{H_30f} + \lambda_{HC00}} = \frac{5 \times 10^2}{(35 + 5,46)10^3} = 1,23 \times 10^3 \text{ mol}/L
                                   PH=-log[H30+]=-log1,23x103=2,9.
      (ay) + OH - + OH - + HCOO + H2O(e) 10, led by live 1/2
       د - باستعمال طريقية المماسين المتوازيين: VBE = 20mL و - باستعمال طريقية المماسين المتوازيين: PHE = 8
                             GAVA=CB. VBE : Estivitive
      CA = CB. VBE = 1.0×10 x20 = 1,0×10 mol/L

Co = 50. CA = 50×10×10 = 5 mol/L.
              K = [HOOD] éy x [HOOD] éy x [H30] éy x [H30] éy

[HOODH] éy x [OH] éy [HOODH] éy x [H30] éy
 K = \frac{K_A}{K_E} = \frac{10^{PK_A}}{10^{PK_E}} = 18^{PK_E - PK_A}
PK_A = PH = 3.8 \text{ S.f. } V_B = \frac{V_B E}{2} = 10 \text{ m.l. } L_B : PLANCE = 10^{14 - 3.8} = 1.6 \times 10^{10} \text{ } 10^4 \text{ } (2 \text{ c. d. s. d. s.
```

