المدة: 3 ساعات

المستوى: 3 ع ت

اختبار الفصل الثاني في مادة العلوم الفيزيائية

التمرين الأول: (07 نقاط)

يهدف التمرين لإيجاد قيمة التسارع والثابت K في سقوط حقيقي

المعلم M=500 من نقطة M=100 من نقطة M=100 المعلم m=100 بيسقط مظلي كتلته مع تجهيزاته m=100 بعتبرها مبدأ الأزمنة: t=0 نعتبرها مبدأ للأزمنة:

1- بفرض أنّ السقوط حر: أكتب المعادلة الزمنية لكل من السرعة والمسافة.

f=Kv في الحقيقة يخضع المظلي لقوى احتكاك مع الهواء شدتها f=Kv في الحقيقة يخضع المظلي المواء العرب المعتمد المعتمد

 $\frac{dv}{dt}(m \cdot s^{-2})$

 $a=rac{dv}{dt}$ يمثل البيان شكل-1-1 تغيرات التسارع

أ- بتطبيق القانون الثاني لنيوتن بيّن أنّ المعادلة التفاضلية

 $\frac{dv}{dt} = Av + B$ لحركة المظلي تعطى بالعبارة

حيث A و B ثوابت يطلب تعيين عبارتيهما.

ب- أكتب معادلة البيان واستنتج:

. $\nu_{
m lim}$ الأرضي g والسرعة الحدية –

تتميز الحركة السابقة بالمقدار $\frac{K}{m}$ أوجد قيمته.

. K استنتج قيمة الثابت -

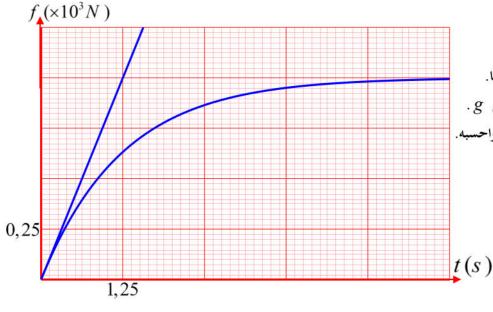
 $v(m \cdot s^{-1})$

2.5

ندرس حركة المظلي بطريقة أخرى حيث نتابع تغيرات شدة قوة الاحتكاك f بدلالة الزمن فنحصل على المنحنى البياني لموضّح في الشكل-II

-2- أ- بيّن أنّه يمكن كتابه المعادلة التفاضلية

$$\frac{df}{dt} + \alpha f = \beta$$
: بالشكل


حيث lpha و eta ثوابت أخرى يطلب تعيين عبارتيهما.

g من النظام الدائم أوجد قيمة التسارع الأرضى

. واحسبه. t=0 ماذا يمثل ميل المماس عند اللحظة

K د- استنتج قيمة الثابت

وقارنها مع القيمة المحسوبة سابقا.

التمرين الثاني: (06 نقاط)

لدينا في المخبر حمضين الأول محلول حمض كلور الهيدروجين $\left(H_3O^++Cl^ight)$ والحمض الثاني حمض الميثانويك

HCOOH نريد معرفة بعض خصائصيهما فنقوم بالتجربتين:

أولا : ندخل في اللحظة t=0 كتلة m=2g من المغنزيوم في بيشر به V=50mمن محلول كلور الهيدروجين تركيزه المولي : $c_0=10^{-2}mol/L$

$$Mg_{(S)} + 2H_3O_{(aq)}^+ = Mg_{(aq)}^{2+} + H_{2(aq)} + 2H_2O$$

قياس الـ pH للمحلول الناتج أعطى النتائج التالية :

				_	_		
t (min)	0	2	4	6	8	10	12
рН	2.0	2.12		2.44	2.66		3.41
$\left[H_3O^+\right] = 10^{-3} mol / L$			5.37			1.12	

. أ-أ ما قيمة الـ pH للمحلول الحمضى قبل بداية التفاعل وبيّن إن كان قوي أم ضعيف.

- أنقل ثم أكمل الجدول السابق.
- أ- أنشئ جدول تقدم للتفاعل واستنتج المتفاعل المحد.

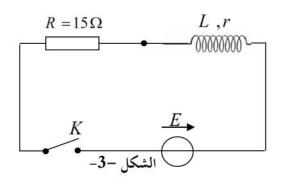
 $- [Mg^{2+}] = \frac{1}{2} (10^{-2} - 10^{-pH})$: بين أن التركيز المولي لشوارد المغنزيوم تعطى بالعبارة التالية :

-ت باستعمال سلم مناسب أرسم المنحنى البياني f(t)=f(t) .

 $t=2 \min$ في اللحظة H_3O^+ ث أحسب السرعة الحجمية لاختفاء شوارد

pH=2,9 وجدنا $C=10^{-2}\,mol\ /L$ تركيزه المولي V=50mL وجدنا V=50mL ثانيا : نحضر حجما V=50mL من حمض الميثانويك V=50mL تركيزه المولي عند الدرجة V=50mL وجدنا

- 1 أكتب معادلة انحلال الحمض في الماء واستخرج الثنائيات (أساس/حمض).
 - أكتب عبارة ثابت التوازن بدلالة $\left[H_{3}O^{+}
 ight]$ و التركيز c ثم احسبه.
 - أحسب نسبة التقدم au_1 وماذا تستنتج.
 - . pH = 3,5 المحلول الحمضي 10 مرات فنجد الـ بمدد
 - . השיד השדיה באבה לישה השידה ושהדיה השדיה ושהדיה השדיה ושהדיה השדיה לישה השדיה השר
 - -3 مما سبق كيف نميز بين حمض قوي وحمض ضعيف.
 - $.M_{Mg} = 24g / mol$:المعطيات


التمرين الثالث: (07 نقاط)

بغرض معرفة سلوك و مميزات وشيعة مقاومتها (r)وذاتيتها L نربطها على التسلسل بمولد ذي توتر كهربائي ثابت E=9V وقاطعة K . الشكل (3)

مخطط الدارة على ورقة الإجابة و بيّن عليه جهة $^{\circ}1$

مرور التيار الكهربائي والتوترات بأسهم.

. في اللحظة t=0 تغلق القاطعة أ-0

أ- أوجد المعادلة التفاضلية التي تعطى الشدة اللحظية i(t) للتيار الكهربائي المار في الدارة.

 $i(t) = A(1 - e^{-Bt})$ المعادلة التفاضلية السابقة تقبل حلا من الشكل:

A و A حدّد مدلول کل من

. بالأمبير i(t) و بالثانية و i(t) i(t) بالأمبير i(t) بالأمبير i(t) بالأمبير i(t) بالأمبير i(t)

أوجد قيم المقادير الكهربائية التالية:

أ- الشدة العظمي I_0 للتيار الكهربائي المار في الدارة.

. L المقاومة r للوشيعة وذاتيتها

ت- ثابت الزمن au المميز للدارة.

i = f(t)ث أرسم بيان

 $^{\circ}4$ أ- ما قيمة الطاقة المخزنة في الوشيعة في حالة النظام الدائم $^{\circ}4$

t= au أحسب قيمة التوتر الكهربائي بين طرفي الوشيعة في اللحظة

بالتوفيق والسداد