السنة الدراسية: 2021 / 2022

ثانوية سى يوسف بولخروف - الشفة

المستوى: 3 ع ت المدة: 3 ساعات

التمرين الأول: (6 نقاط)

نضع في بيشر حجما V=100mL من محلول حمض كلور الماء $(H_3O^+;Cl^-)$ تركيزه المولي V=100mL نضع في بيشر حجما كتلة m=2g ، نتابع هذا التحول عن طريق قياس الناقلية النوعية للمزيج التفاعلي عند درجة حرارة ثابتة .

 $CaCO_{3(s)} + 2H_3O_{(aq)}^+ = Ca_{(aq)}^{2+} + CO_{2(aq)} + 3H_2O_{(l)}$: ينمذج هذا التحول التام بالمعادلة الكيميائية التالية:

1 - أنشئ جدول تقدم التفاعل ، ثم بين أن H_30^+ هو المتفاعل المحد .

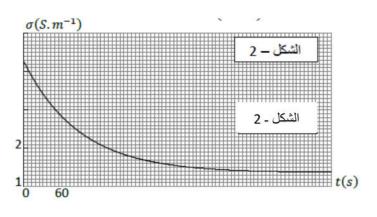
x - يمثل الشكل - x - المنحنى البياني لتغيرات الناقلية النوعية x للمزيج التفاعلي بدلالة تقدم التفاعل x

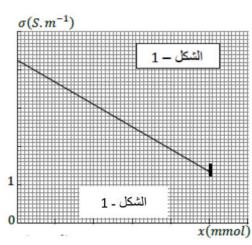
أ/بماذا تتعلق الناقلية النوعية لمحلول مائى ؟

 t_f عند σ_0 الناقلية النوعية عندt=0 عند الناقلية النوعية عند كل من الناقلية النوعية عند t_f

 $\sigma(t)=\sigma_0+rac{(\lambda_{Ca^{2+}}-2\lambda_{H_3O^+})}{V}$. x(t) : اثبت أن الناقلية النوعية $\sigma(t)$ للمزيج التفاعلي تكتب على الشكل $\sigma(t)$

 $^{\circ}$ اكتب معادلة البيان ، ثم استنتج الناقلية النوعية المولية للشار دتين $^{+}$ H_{3} و $^{+}$ ، هل هاتان القيمتان ثابتتان في كل المحاليل المائية


: t التمثيل - 2 - التمثيل البياني للناقلية النوعية σ للمزيج التفاعلي بدلالة الزمن σ :


 $t=120\,s$ و t=0 وجد عبارة السرعة الحجمية للتفاعل ، ثم احسب قيمتها عند اللحظتين

ب / كيف تفسر تناقص السرعة الحجمية للتفاعل بمرور الزمن ؟

ت / عرف زمن نصف التفاعل ، ثم بين أن : $\sigma_{t_{1/2}} = \frac{\sigma_0 + \sigma_f}{2}$ و حدد قيمته بيانيا.

 $M(CaCO_3)=100g/mol$; $\lambda_{Cl^-}=7,63mS.\,m^2/mol$: المعطيات

التمرين الثاني: (7 نقاط)

الجدول التالي يحتوي على معلومات تخص بعض التوابع (الأقمار الطبيعية) التي تدور حول كوكب زحل

(10^8m) نصف المحور الكبير a (البعد المتوسط)	الدور المداري ($10^{5}S$)	(Kg) الكتلة	القمر
2,38	1, 18	$1,08\times10^{20}$	Encelade
1,85	0,81	$3,75 \times 10^{19}$	Mimas
1,37	0, 52	$6,6 \times 10^{15}$	Atlas
3,77	2,36	$1,09 \times 10^{21}$	Dione'

- 1 ـ ما هو المرجع المناسب لدراسة حركة هذه الأقمار ؟ و ما هو الشرط حتى يكون هذا المرجع عطاليا ؟
- 2 استنادا على القانون الأول لكيبلر مثل برسم تخطيطي مسار القمر 'Dione مبينا موقع كوكب زحل.
- 3 ـ اعتمادا على القانون الثاني لكيبلر بين أن حركة هذا القمر وفق مداره ليست منتظمة (وضح على نفس الرسم التخطيطي السابق) .
- 4 أ / عرف الدور T ، ثم اوجد عبارته بدلالة G: ثابت الجذب العام ، M_S كتلة زحل و a^3 مكعب البعد بين مركزي زحل و أحد الأقمار . μ_S ب القانون الثالث لكيبلر ، تأكد من صحته .
 - $1cm o 0,5 imes 10^{10} S^2$ ، $1cm o 10 imes 10^{24} m^3$: بدلالة a^3 باستعمال السلم بيانيا T^2 بدلالة a^3 باستنج كتلة كوكب زحل .
 - r 4 باعتبار مدارات هذه الأقمار دائرية مركزها هو مركز كوكب زحل و نصف قطرها r
 - M_S كتلة زحل G ، كتلة : ثابت الجذب العام G ، كتلة زحل G ، كتلة القمر M_S ، كتلة القمر M_S ، كتلة القمر M_S ، و نصف قطر المسار الدائري M_S .
 - ب / بتطبيق القانون الثاني لنيوتن اثبت أن الحركة دائرية منتظمة
 - $. \ r$ و M_S ، G عبارة تسارع مركز عطالة أحد هذه الأقمار بدلالة
 - ث / احسب السرعة المدارية للقمر Atlas ، بماذا تتعلق السرعة المدارية لهذه الأقمار ؟
 - المعطيات : $G=6,67 imes 10^{-11} SI$ ، الدور المداري لكوكب زحل حول الشمس 29 سنة

التمرين التجريبي: (7 نقاط)

في حصة الأعمال المخبرية كلف الأستاذ أربعة أفواج من التلاميذ (أ) ، (+) ، (+) ، (+) ، (+) الموجودة في محلول كلور الحديد الثلاثي H_2O_2 باستعمال شوارد الحديد Fe^{3+} الموجودة في محلول كلور الحديد الثلاثي S_0

 $2H_2 m{O}_{2(aq)} = m{O}_{2(g)} + 2H_2 m{O}_{(l)}$: يتفكك الماء الأكسجيني حسب المعادلة

أخذ كل فوج عينة حجمها $V_0=10ml$ من المحلول $V_0=10ml$ دو التركيز المولي ، عند اللحظة $V_0=10ml$ اضاف كل فوج للعينة $V_0=10ml$ ، انظر الجدول التالى : $V_0=10ml$ ، انظر الجدول التالى : $V_0=10ml$ ، انظر الجدول التالى :

الفوج	(¹)	(ب)	(5)	(-)
$V_1(ml)$	89	88	87	85
$V_2(ml)$	1	2	3	5

1-أ / ما هو دور شوارد الحديد Fe^{3+} في هذا التفاعل ؟ علل.

ب / في بداية التفاعل لاحظ التلاميذ أن انطلاق غاز الأكسجين عند الفوج (د)

يكون كثيفا مما هو عليه عند الفوج (أ) ما هو السبب حسب رأيك ؟

2 ـ في لحظات مختلفة يأخذ كل فوج من مزيجه المتفاعل حجما V=10ml يضعه في بيشر يحتوي على 50ml من الماء المثلج

. C=0,02mol/l تركيزه المولى برمنغنات البوتاسيوم المحمض المحمض ($K^+;MnO_4^-$) تركيزه المولى بمحلول برمنغنات البوتاسيوم المحمض

الجدول أدناه يمثل حجم برمنغنات البوتاسيوم اللازم للتكافؤ $V_{E}\left(ml\right)$ لكل فوج عند لحظات زمنية مختلفة :

أ/مثل برسم تخطيطي البروتوكول التجريبي للمعايرة

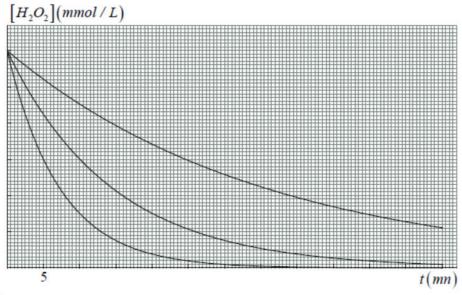
ب / اكتب معادلة تفاعل المعايرة علما أن الثنائيتين (OX/Red) هما:

 (O_2/H_2O_2) (MnO_4^-/Mn^{2+})

ت/ انجز جدول تقدم تفاعل المعايرة.

ث/ بين أن تركيز الماء الأكسجيني في كل التجارب يكتب على

الشكل : V_E حيث $H_2 O_2$ = $5 V_E$ مقاسا باللتر.


الفوج الفوج الفوج الفوج t(mn)(1) (ب) (ح) (2) 0 18.0 18.0 18.0 18.0 10 13.5 9.0 6.9 4.5 20 10.2 2.7 1.2 4.5 30 7.8 2.2 1.2 0.3 45 5.1 0.75 0.3 0 60 3.3 0.3 0

. S_0 المحلول المحلول المحلول المحلول عن تجربة ، ثم استنتج المحلول المحلول . S_0

 $[H_2O_2]=f(t)$: الفوج (أ) ، (ب) و (د) منحنى تغيرات تركيز الماء الأكسجيني بدلالة الزمن (ب) و (د) منحنى تغيرات تركيز

1 - أرفق كل بيان بالفوج الموافق له مع التعليل (بعد إعادة نقل البيانات على ورقة الإجابة بشكل تقريبي).

2 - مثل مع البيانات السابقة البيان الخاص بالفوج (ج) ، مع التعليل .

بالتوفيق و السرااااه