اختبار الفصل الأول في مادة العلوم الفيزيائية

الوقت: 2سا الأقسام: 3ع ت

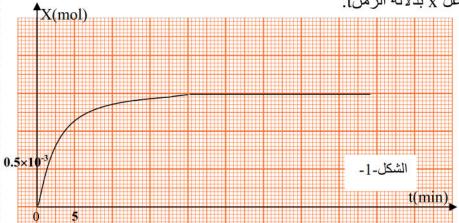
التمرين الأول:

 C_1 وتركيزه V_1 =100ml حجمه $(K^+_{(aq)}+\Gamma_{(aq)}^-)$ حجمه V_1 =100ml وتركيزه V_1 =100ml فرمحلول بير وكسودي كبريتات البوتاسيوم V_2 =100ml حجمه V_2 =100ml حجمه V_2 =100ml حجمه V_2 =100ml حجمه V_2 =2.0×10⁻²mol/l

 $S_2O_8^{-2}_{(aq)} + 2\Gamma_{(aq)} = I_{2(aq)} + 2SO_4^{-2}_{(aq)}$: تكتب المعادلة المعبرة عن التفاعل المنمذج للتحول الحاصل والمعادلة المعبرة عن التفاعل المنمذج للتحول الحاصل والمعادلة المعادلة المعادلة

x بدلالة الزمن x يمثل البيان الشكل-1- تغيرات تقدم التفاعل

1-ماهو النوع الكيميائي المرجع؟علل
 وماهو النوع الكيميائي المؤكسد ؟علل
 أوجد كمية المادة الابتدائية


2- اوجد كميه المادة الابتدائيه
 لبير وكسو دى كبر يتات.

3- أنجز جدو لا لتقدم التفاعل .

4- أستنتج بيانيا قيمة التقدم الأعظمي

.X_{max}

 C_1 التركيز المولي -5

6-اكتب عبارة السرعة الحجمية للتفاعل وأحسب قيمتها العددية في اللحظة t=5 min . أستنتج السرعة الحجمية لتشكل شوارد كبريتات SO_4^{2-} في نفس اللحظة السابقة.

7- عرف زمن نصف ألتفاعل $t_{1/2}$ واحسب قيمته العددية .

التمرين الثاني:

يستوجب استعمال الأنديوم 192 أو السيزيوم 137 في الطب، وضعهما في أنابيب بلاستكية قبل أن توضع على ورم المريض قصد العلاج.

 $_{1}^{-}$ السيزيوم $_{2}^{-}$ Cs السيزيوم $_{3}^{-}$ السيزيوم $_{3}^{-}$

أ - ما هو تركيب نواة السيزيوم 137؟

ب - ما معنى نواة مشعة؟

جـ- أكتب المعادلة المعبرة عن التفاعل المنمذج لتفكك نواة السيزيوم137 لتتحول إلى نواة مستقرة X . في جد ضمن قائمة الانوية المدونة في الجدول أدناه:

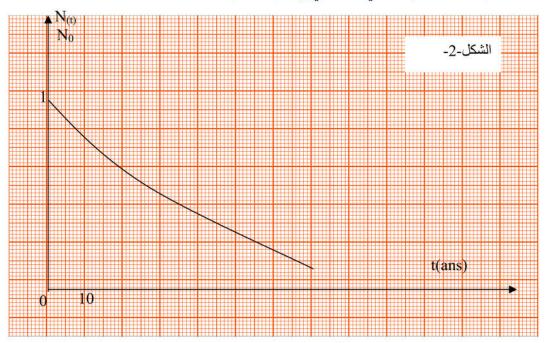
النواة	138 La	137 Ba	138 Ba	131 Xe
	57	56	56	54

د- أحسب بالميغا إلكترون فولط وبالجول:

طاقة الربط للنواة $X \stackrel{A}{=} X$ ثم طاقة الربط لكل نوية.

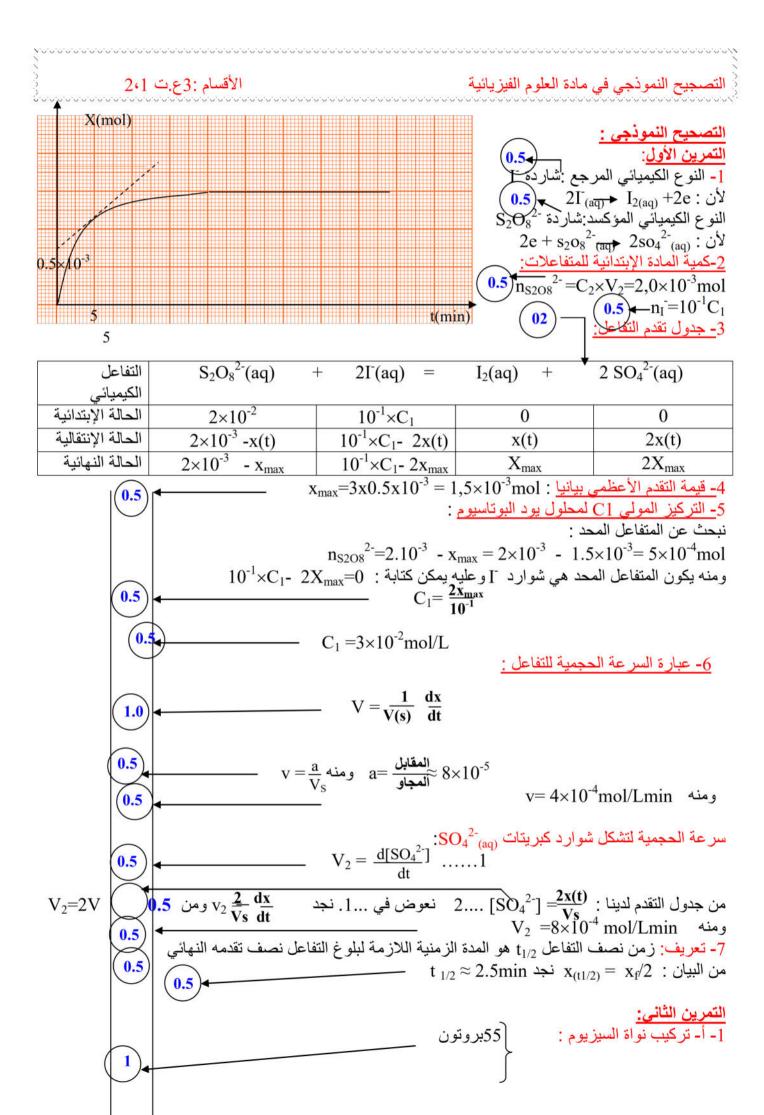
t=0 عينة كتلتها $m_0=1.0\times 10^{-6}$ من السيزيوم $m_0=1.0\times 10^{-6}$ المحظة $m_0=1.0\times 10^{-6}$ عينة كتلتها $m_0=1.0\times 10^{-6}$ من السيزيوم على عينة كتلتها $m_0=1.0\times 10^{-6}$

أحسب عدد الأنوية N_0 الموجودة في العينة .


 $\frac{N(t)}{N_0} = f(t)$ سمحت متابعة النشاط الإشعاعي لعينة من السيزيوم 137 برسم المنحنى ($\frac{N(t)}{N_0}$) الشكل الشكل المحت متابعة النشاط الإشعاعي لعينة من السيزيوم 137 برسم المنحنى أ- عرف زمن نصف العمر ($\frac{N(t)}{N_0}$)

ب- عين قيمة زمن نصف العمر للنواة Cs إليانياً.

55


ج- أوجد العبارة الحرفية التي تربط بين $(t_{1/2})$ وثابت التفكك λ د- أحسب قيمة λ لنواة السيزيوم 137.

هـ أحسب قيمة النشاط الإشعاعي الأبتدائي A₀ لهذه العينة.

و- تستعمل هذه العينة بعد خمسة (05) أشهر من تحضيرها: - ماهو مقدار النشاط الإشعاعي للعينة حينئذ؟ وما هي النسبة المئوية لأنوية السيزيوم المتفككة؟

 $m_p=1.00728~u~,~m_n=1.00866~u~,~m_{Cs}=136.90581u~,~1u=1.66\times 10^{-27} kg,~$ يعطي: . $1 Mev=1.6\times 10^{-13} J~,~1u=931.5 Mev/C^2,~m(X)=~136.905812~u~$ ثابت أفوقادرو $^{-1} N_A=6,023\times 10^{23} mol^{-3}$ ثابت أفوقادرو أ

$ \frac{0.5}{1} $ $ \frac{\alpha}{55} $ $ \frac{\alpha}{55} $ $ \frac{A}{C} $ $ \frac{A}{5} $
$E_L = 1120.9 \text{MeV}$ و بالجول: $E_L = 1120.9 \text{MeV}$ و منه $E_L = (Z.m_p + N.m_n - m_X)C^2$: $\frac{A}{Z}$ $\frac{A}{Z}$ $\frac{E_L}{A}$: $\frac{E_L}{A}$
$N_0=4,4\times 10^{15}$ $N_0=4,4\times 10^{15}$ 0.5 $1-3$ $1-$
$A_0 = \frac{A_0}{A_0} = \frac{A_0}{A$
$A = 3.220 \times 10^6 \mathrm{Bq}$ ومنه $A = A_0 \mathrm{e}^{-\lambda t}$ ومنه $A = A_0 \mathrm{e}^{-\lambda t}$ ومنه $A = 3.220 \times 10^6 \mathrm{Bq}$ ومنه $A = A_0 \mathrm{e}^{-\lambda t}$ ومنه $A = A_0 \mathrm{e}$