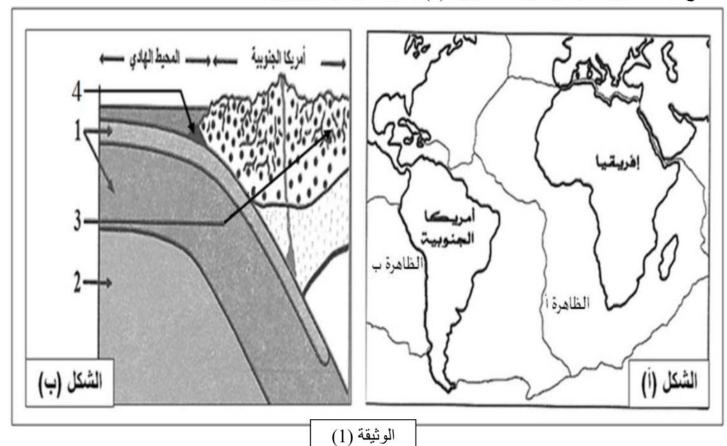
الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

شعبة: العلوم التجريبية

ثانوية هواري بومدين- السوافلية - مستغانم

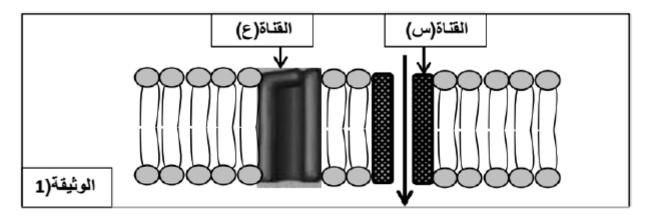

امتحان البكالوريا التجريبي في مادة العلوم الطبيعية

دورة ماي 2019

على المترشح اختيار أحد الموضوعين التاليين: الموضوع الأول:

التمرين الأول: (05 نقاط)

توصل العلماء لنظرية زحزحة القارات، مفادها أن القارات كانت كتلة واحدة تدعى بانجيا(Pangea)، ثم انشطرت إلى عدة صفائح ابتعدت عن بعضها البعض. تمثل الوثيقة (1) بعض الظواهر الجيولوجية.



- 1. تعرف على البيانات المرقمة ، ثم سم الظاهرتين (أ) و (ب).
- 2. بتوظيف معارفك وباستغلال الوثيقة (1) ، وضح في نص علمي مختصر النشاطات التكتونية الممثلة في شكلي الوثيقة، مع تقديم البراهين التي تؤيد ذلك، والعوامل المسببة لها.

التمرين الثاني: (07 نقاط)

يتطلب العمل المنسق بين الأعضاء تدخل آليات اتصال عصبي تساهم فيها بروتينات أغشية العصبونات التي تسمح بتدفق للمعلومات، لذلك فان عواقب أي خلل في هذه الآلية يسبب أمراض متفاوتة الخطورة.

الجزء الأول: تحتوي الألياف العصبية على عدة أنواع من البروتينات الغشائية التي تلعب دورا أساسيا في الاتصال العصبي، تمثل قنوات الصوديوم (س) و (ع) الممثلة في الوثيقة (1).

- 1. تعرف على القناة (س)و (ع)ثم بين اختلاف خصائصهما. اعتمادا على معلوماتك.
 - 2. استخرج من الوثيقة حالة الليف العصبي مع تعليل الإجابة.

الجزء الثاني: للتعرف على بعض خصائص الغشاء بعد المشبكي نستعرض الدراسة التالية:

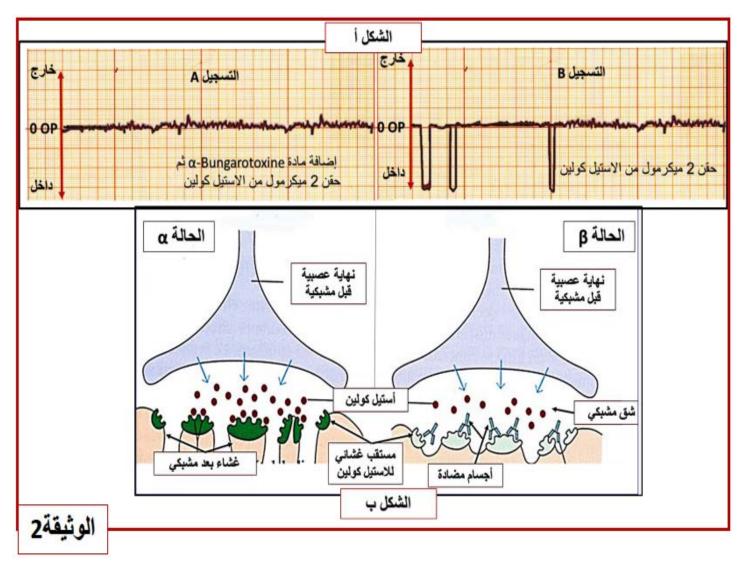
المرحلة الأولى:

تم عزل قطع من غشاء بعد مشبكي لحيوان الكالمار بحيث تتحوصل تلقائيا مع إضافة شوارد Na^+ المشعة للوسط مع الحفاظ على التوزيع الشاردي ثابت، ظروف ونتائج التجربة موضحة في الجدول التالي:

النتائج المسجلة	ظروف التجربة	
ظهور الإشعاع في الوسط الداخلي.	إضافة كمية كافية من الاستيل كولين للوسط الفيزيولوجي.	التجربة 01
عدم ظهور الإشعاع في الوسط الداخلي.	معالجة الحويصلات بمادة <u>α-bungarotoxine</u> ثم إضافة كمية كافية من الاستيل كولين للوسط الفيزيولوجي.	التجربة 02
	-	

1. ماهي المعلومة التي يمكن استخراجها من خلال مقارنتك لنتائج التجربتين(1) و (2) ؟ ثم اقترح فرضية مناسبة لتفسير عدم ظهور الإشعاع في الوسط الداخلي في التجربة (2).

المرحلة الثانية:

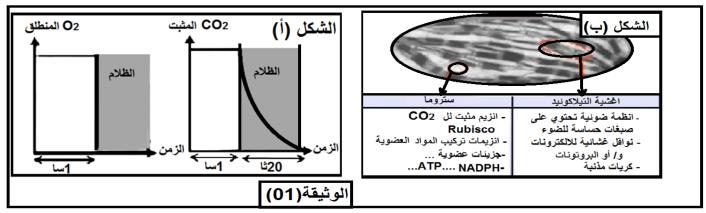

الشكل(أ) من الوثيقة (2) يمثل تسجيلات لتيارات كهربائية متولدة على مستوى قطعة معزولة من الغشاء بعد المشبكي (باستعمال تقنية Patch-Clamp) في ظروف تجريبية مختلفة.

2. قدم تحليلا مناسبا للتسجيلين A و B للشكل(أ) من الوثيقة (2). ثم حدد مصدر التيارات المسجلة في التسجيل B من الشكل(أ) من الوثيقة (2).

المرحلة الثالثة:

إن مرض الوهن العضلي يتمثل في نقص القوة العضلية وبالتالي الشلل.

لتفسير الحالة المرضية نحقن أرنبا عاديا بأجسام مضادة ضد المستقبلات الغشائية للأستيل كولين فيصاب بتعب سريع للعضلات وضعف قوتها . مكنت الملاحظة المجهرية لمنطقة الاتصال العصبي — العضلي عند الأرنب من تمثيل الحالتين الموضحتين في الشكل(ب) من الوثيقة (2) حيث : الحالة الطبيعية(α) ، الحالة المرضية(β) .


3. قدم تحليلا للشكل(ب). ثم مثل التسجيل الكهربائي الحاصل على الغشاء بعد المشبكي في الحالتين(α) و (β). ثم فسر علميا سبب الو هن العضلى اعتمادا على معطيات الشكل (ب) من الوثيقة (2).

التمرين الثالث: (80 نقاط)

لخلايا النبات الأخضر القدرة على تحويل الطاقة الضوئية إلى طاقة كيميائية كامنة في المركبات العضوية انطلاقا من مواد معدنية ، وفق آليات يتطلب بعضها توفر الضوء و اليخضور و البعض الأخر يتطلب توفر CO₂.

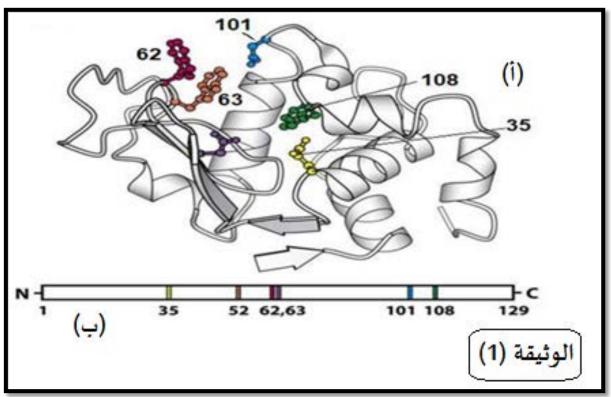
الجزء الأول: عرض معلق من الكلوريلات (كائنات يخضورية وحيدة الخلية) لمدة ساعة لإضاءة قوية في وسط مزود بالمشع لتنقل الأشنة بعد هذه المدة إلى وسط مظلم.

نتائج قياس تثبيت الـ CO_2 المشع و الـ O_2 المنطلق ملخصة في الشكل (أ) من الوثيقة (1)، بينما يمثل الشكل (ب) التركيب الكيموحيوي لكل من أغشية التيلاكوئيد والستروما (الحشوة).

- 1. بين بأن نتائج الشكل أ- من الوثيقة (1) تؤكد أن تحويل الطاقة الضوئية إلى طاقة كيميائية كامنة يتم في مرحلتين.
- 2. استخرج من جدول الشكل (ب) من الوُثيقة (1) الأدلة التي تؤكد ما توصلت إليه في الجواب (1) محدداً مقر كل مرحلة.

الجزء الثانى: وضع معلق من الصانعات الخضراء مخربة جزئيا وميتوكندريات ضمن مفاعل حيوي يقيس تغيرات كمية الأكسجين المنحلة في المعلق بدلالة الزمن، شروط التجربة ونتائجها موضحة في الشكل (أ) من الوثيقة (2).

- . O_2 فسر تغيرات تركيز O_2 في وجود الضوء خلال الفترتين (A-B) ثم (B-E) مبينا شروط تحرير O_2 .
- 2. مستعينا بما توصلت إليه في السؤال 1،أكتب التفاعلات الموافقة لانطلاق O2 على مستوى الصانعات الخضراء في الظروف الطبيعية.
- على مستوى التيلاكوييد في الظروف الطبيعية تركيب جزيئات الـ ATP ،الشكل (ب) من الوثيقة(2) يلخص نتائج قياس [+H] في الوسط الذي يحتوي على تيلاكوييدات كاملة و كل العناصر المميزة للحشوة.
 حلل منحنى الشكل ب- موضحا الجزء الذي يتم فيه تركيب ATP مع التعليل .


الجزء الثالث: انطلاقا من الدراسة السابقة و معلوماتك لخص في رسم تخطيطي تحصيلي الظواهر التي تحدث على مستوى التيلاكوييدات والتي تسمح بتركيب الـATP و إرجاع +NADP و علاقتها بتثبيت CO₂.

انتى الموضوع الاول

الموضوع الثاني:

التمرين الأول: (05 نقاط)

يرتبط نشاط البروتين ببنيته الفراغية التي تحددها مجموعة من الأحماض الأمينية الداخلة في تركيبها، نريد التعرف على العلاقة بين بنية البروتين و وظيفته المتخصصة و دور الأحماض الأمينية في ذلك. تبين الوثيقة (1) البنية الفراغية لإنزيم الليزوزيم.

- 1. اكتب صيغة ثنائي الببتيد المتشكل من ارتباط Lys- Asp ثم اكتب صيغته في pH=1 معللا إجابتك.
- باستغلال معطيات الوثيقة و معلوماتك وضح في نص علمي تباعد الأحماض الأمينية في الشكل (ب) و تقاربها في الشكل (أ) محددا دور المورثة في ذلك.

تعطى:

R (Asp)= CH_2 -COOH

 $R (Lys) = (CH_2)_4 - NH_2$

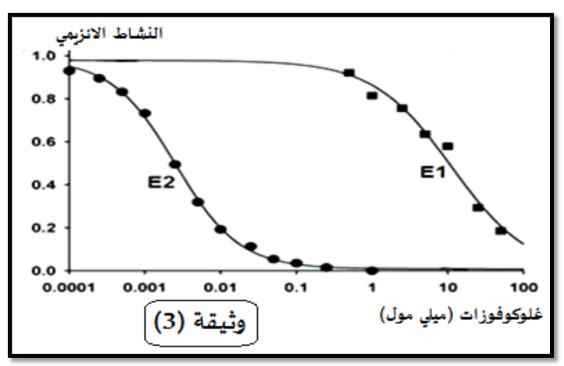
التمرين الثانى: (07 نقاط)

تؤدي الإنزيمات دورا فعالا في حياة الكائنات الحية نظرا للوظائف العديدة التي تقوم بها مثل إنزيم EPSPS المسؤول على إنتاج مادة أولية تشرف على تركيب الأحماض الأمينية العطرية الضرورية لحياة النبات.

الجزء الاول: مكن الهدم الآلي لخلايا إنشائية نباتية من الحصول على مستخلصات خلوية متجانسة أخضعت لما فوق الطرد المركزي ضمن محلول سكاروز. يمثل جدول الوثيقة (1) نتائج الفصل من حيث مكونات و خصائص الأجزاء المفصولة من الخلايا (سرعة الدوران مقاسة بوحدات جاذبية (g) في مدة زمنية مقدرة بالدقيقة).

تركيب فيرونينات	بناج ATP	استهلاگ الــــــــــــــــــــــــــــــــــ	ARN	ADN	التركيز بالبرونتينات	الأجزاء
100	100	100	100	100	100	المستخلص الكلي
0	0	0	10	98	10	الجزء (1) (750g/10mn)
3	96	96	5	2	25	الجزء (2) (20000g/20mn)
97	0	3	84	0	20	الجزء (3) (100000g/1h)
	الوثيقة (1)					

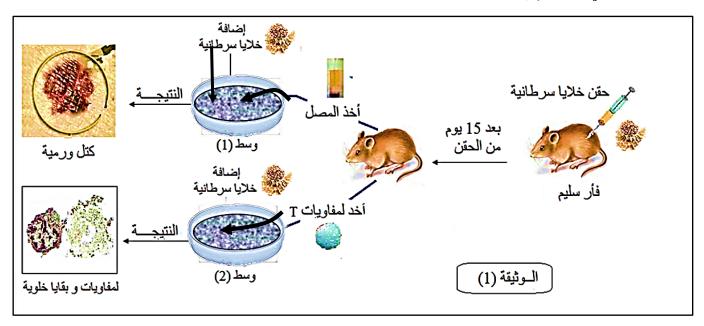
- 1. باستغلالك لمعطيات الوثيقة ، سم الأجزاء (1، 2، 3) المفصولة محددا المعيار الذي اعتمدت عليه.
 - 2. حدد دور كل من الأجزاء المفصولة في تركيب الإنزيم.


الجزء الثاني:

توجد في مبيد الأعشاب مادة سامة تعرف بالغليكوفوزات التي تؤثر على عمل إنزيم EPSPS الشكل -1- من الوثيقة (2) يبين التفاعل الإنزيمي دون إضافة مبيد الأعشاب، أما الشكل -2- فيوضح تأثير مادة الغليكوفوزات على نشاط إنزيم EPSPS.

- 1. وضح التفاعل الحاصل في الشكل (1) بمعادلة إجمالية باستعمال الرموز E, S, P.محددا نوع التفاعل الحيوي.
- 2. اعتمادا على الشكل (2) اشرح آلية تأثير مادة الغليكوفوزات السامة على نشاط إنزيم EPSPS، مستنتجا سبب استعمال مادة الغليكوفوزات في مبيد الأعشاب.

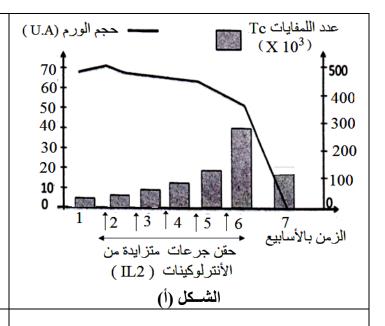
- بينت دراسات مقارنة بين بنية إنزيم بكتيريا E1) Agrobacterium tumefaciens) و إنزيم نبات الصوجا (E2) أن هناك اختلافا في الحمض الأميني رقم 100 المتواجد ضمن الأحماض المشكلة للموقع الفعال حيث في الإنزيم (E1) هو (E2) هو Agrobacterium tumefaciens أنها تقاوم و في (E2) هو Agrobacterium tumefaciens أنها تقاوم مادة الغليكوفوزات السامة.


قصد الحصول على نبات صوجا مقاوم للمبيد السام تم في تجربة استيلاد استبدال المورثة المشرفة على تركيب الإنزيم (E2) بالمورثة المشرفة على تركيب الإنزيم (E1) فتم الحصول على سلالة من نبات الصوجا معدلة وراثيا، ثم تمت دراسة النشاط الإنزيمي لـ E1 (نبات الصوجا المعدل وراثيا) و E2 (نبات الصوجا العادي)، النتائج المحصل عليها موضحة في الوثيقة (E).

 3. من خلال تحليلك المقارن لمنحنيي الوثيقة (3) بين كيف يمكن استعمال مبيد الأعشاب دون القضاء على نبات الصوجا المعدل وراثيا.

التمرين الثالث: (80 نقاط)

يتصدى الجهاز المناعي للأجسام الغريبة عن طريق الاستجابات المناعية ، تلعب فيها البروتينات دورا هاما. الجزء الاول: يمثل إقصاء الخلايا السرطانية مظهرا من مظاهر هذه الاستجابات ، ولتحديد الكيفية التي يتم بها ذلك نعالج المعطيات الممثلة في الوثيقة (1).

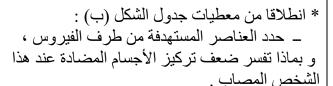

- قارن بين تأثير كل من المصل واللمفاويات على الخلايا السرطانية في الوسطين ، ثم استنتج نمط الاستجابة المناعية المتدخلة ضد الخلايا السرطانية.
 - 2. مثل برسم تخطيطي تفسيري على المستوى الجزيئي آلية التدخل.

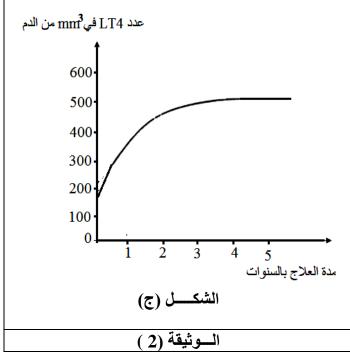
الجزء الثاني: لغرض مساعدة الجهاز المناعي في إقصاء الورم السرطاني تم تحقيق الدراسة الآتية:

1. أخضع شخص مصاب بالسرطان للحقن المتكرر بجرعات متزايدة من الأنترلوكينات (IL2) وتم خلال ذلك معايرة حجم الورم ونسبة اللمفاويات في دمه .

النتائج المحصل عليها ممثلة في الشكل (أ) الوثيقة (2):

الشخص	الشخص السليم	عناصر المعايرة
المصاب	,	
أقل من 100	من (2000 إلى	عدد اللمفاويات
	(4000	LT4 /مم³
1250	من(1000 إلى	عدد اللمفاويات
	(2000	LB /مم
1		تركيز الأجسام
ضعیف جدا	أكثر من 400	المضادة (Ab)
		(mg/dl)




الشكل (ب)

باستغلال النتائج التجريبية (الشكل (أ)):

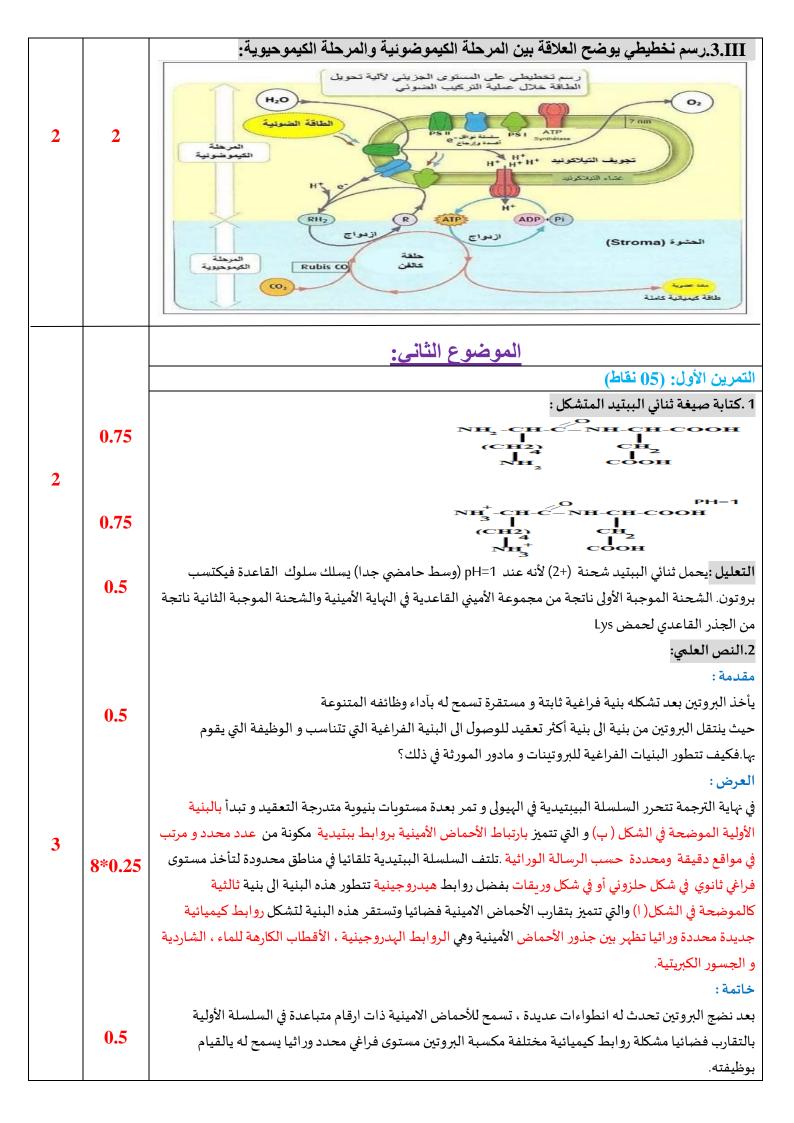
_ حدد أهمية العلاج بالأنترلوكين مع التوضيح .

2. خلال التحاليل الطبية المرافقة لعملية العلاج أظهرت النتائج أن هذا المريض مصاب بفيروس VIH في مرحلة متقدمة. جدول الشكل (ب) من الوثيقة (2) يبين نسب بعض عناصر الجهاز المناعي عند هذا الشخص المصاب مقارنة بمجالات نسبتها العادية عند شخص سليم.

- 3. للحد من تدهور صحة هذا الشخص المصاب بالـ (VIH) أوصاه الطبيب المعالج بتناول دواء يدعى المركب الثلاثي أو العلاج الثلاثي(دواء مستخرج من الملائمة بين ثلاثة أدوية) بكيفية مستمرة مع المراقبة الدورية لتطور عدد اللمفاويات LT4.
 - _ النتائج المحصل عليها ممثلة في الشكل (ج) الوثيقة (2).
 - * استعانة بمعطيات الشكل (ج) الوثيقة (2):
 - _ بيّن أثر هذا الدواء في الحد من تدهور صحة المصاب.

الجزء الثالث: من خلال الدراسة السابقة ومعلوماتك لخص في نص علمي يبرز دور البروتينات في الدفاع عن الذات.

انتى الموضوع الثاني


أساتذة المادة يتمنون لكم التوفيق والنجاح في البكالوريا و ما بعدها

التصحيح النموذجي وسلم التنقيط للبكالوريا التجريبي دورة ماي 2019

العلامة	العلامة	الأجابة النموذجية			
الكاملة	المجزأة	## 			
		الموضوع الأول:			
		رول: (05 نقاط) الأول: (50 نقاط)			
1	0.25*4	2- الأستينوسفير	1- البيانات: 1- الليتوسفير (لوح محيطي)		
1	0.25	4- خندق بحري (محيطي).	3- سلسلة جبلية (قشرة قارية)		
			– تسمية الظاهرتين:		
1	0.5*2	الظاهرة (ب): ظاهرة التقارب	الظاهرة (أ): ظاهرة التباعد		
			2- النص العلمي:		
		ت إلى عدة صفائح تكتونية، والتي تكون إما محيطية أو قارية أو مختلطة.			
	0.5	لعوامل المسبّبة لها؟	فما هي النشاطات التكتونية المؤدية إلى ذلك، وما هي ا		
		بينها:	يمكن للصفائح للتكتونية أن تتباعد أو تتقارب فيما		
	0.5	ميطية التي تتميز ببراكين وزلازل. يمكن تبرير حركات التباعد من خلال: زحزحة	- حركات التباعد: تتمثّل حدودها في الظهرات وسط م		
		•	القارات والتوسع المحيطي.		
	0.25	لجغرافي)، الدليل الجيولوجي، الدليل المستحاثي (أقوى الأدلة).	, -		
	0.20		الأدلة التي تؤكد التوسع المحيطي هي: اختلال مغنطة الصخور النارية بشكل تناظري كلم		
	0.25	تعور القارية بشكل فاطري كنما البعدة عن حور الظهرة، ريادة عن الطبعات			
3			الرسوبيات وعمرها كلما ابتعدنا عن محور الظهرة.		
	0.5	للناطق التباعد بغطس صفيحة ما تحت صفيحة أخرى، ويُدعى هذا بالغوص.			
		. إلى القارة وفق مستوى مائل (زواية قدرها 45 أو 90 درجة) يدعى مستوى			
		طافية. وتَصحبُها اندفاعات بركانية (براكين انفجارية)، كما تتمثل حدودها في	بنيوف الذي يفصل بين الصفيحة الغائصة والصفيحة اا		
			سلاسل جبلية حديثة.		
	0	نكتونية، حيث: التيارات الصاعدة الساخنة على مستوى الظهرات المحيطية،	تعتبر تيارات الحمل المحرّك الأساسي لهذه الصفائح ال		
	0.5	يارات النازلة تتبرّد على مستوى مناطق الغوص، بالإضافة إلى زيادة كثافة اللوح الغائص بالنسبة للوح الطافي، والأستينوسفير ذو			
		تفكُّك العناصر المشعّة أساسا.	السلوك المطاطي. تنتج الطاقة المسببة لتيارات الحمل من		
		صفائح متحركة عن بعضها البعض، وهذا ما يدعى بنظرية تكتونية الصفائح.	- ,		
	0.5		وتعود هذه الحركة إلى تيارات الحمل.		

		التمرين الثاني: (7 نقاط)
	0.25*2	1/1- التعرف على القناتين و خصائصهما: - القناة (س):قناة ميز (التسرب)للـ+Na
		- القناة (ع):قناة مبوبة كهربائياللـ. +Na الخصائص: "تاتالله الناسية المراسية المراسي
1.5	0.5	-قناة الميز مفتوحة باستمر ار . -قناة الفولطية تنفتح تحت تأثير التنبيه الفعال . - " المعادلة الفولطية المعال المعال . " المعال . " المعال . " . " . " . " . " . " . " . " . " .
1.5		-نفاذية الـ +Na تكون بطيئة في قناة الميز و سريعة في القناة الفولطية. 2-حالة الليف العصبي: في حالة راحة.
	0.25*2	عصف بيب مصبي. في عد ربط. التعليل: لأن القناة الفولطية الخاصة بـ+Na مغلقة.
		1/1المعلومة المستخرجة من مقارنة نتائج التجربتين(1)و(2):
		-المقارنة: -في وجود الأستيل كولين و غياب a bungarotoxine حركة الشوارد +Na المشعة من الوسط الخارجي
	0.5	لى الوسط الداخلي. أما في وجود α bungarotoxine و الأستيل كولين عدم نفاذية الغشاء لشوارد+Na المشعة.
		اما في وجود u bullyalotoxille و الاستين خوايل عقم تقادية العقباء لشوارد+۱۷۵ المسعة. المعلومة:
	0.25	-نفاذية الخشاء بعد مشبكي لشوارد +Na تتم تحت تأثير الأستيل كولين. - الفرضية المقترحة:
	0.5	المادة السامة نتبت على المستقبلات الخشائية للأستيل كولين و بالتالي تتبط عمل الأستيل كولين.
	0.5	2_ التحليل: التسجيل:(A)
	0.25	-بعد إضافة α bungarotoxine و 2 ميكرومول من الأستيل الكولين نلاحظ إنعدام التيار الأيوني. التسجيل:(B)
	0.25	-بحقن 2 مُيكْرومول من الأستيل كولين فقط تسجيل تيارات أيونية داخلية.
	0.25	ومنه α bungarotoxine يمنع تأثير الأستيل كولين على الغشاء بحد مشبكي. - تحديد مصدر التيارات المسجلة في التسجيل (B):
	0.5	-إن مصدر التيارات الأيونية الداخلية حركة شوارد +Na نحو الداخل بانفتاح فنوات مبوية كيميائيا بتتبيت الأستيل كولين على مستقبلاته الخشائية القنوية للخشاء بحد المشبكي.
5.5	0.25	 3 - تحليل الشكل (ب): - في الحالة الطبيعية (α): غياب للأجسام المضادة في ارتباط جزيئات الأستيل كولين بالمستقبلات الخسائية البعد
5.5	0.25	مسَيكية ِ
	0.5	-في الحالة المرضية (β):في وجود الأستيل كولين و الأجسام المضادة ضد المستقبلات الغشائية للأستيل كولين، ارتباط الأجسام المضادة على المستقبلات الخسائية للأستيل كولين، بقاء جزيئات الأستيل كولين حرة.
	0.5	ومنه:الأجسام المضادة تنافس الأستيل كولين على الارتباط بمستقبلاته النوعية الموجودة على مستوى الغشاء بعد مسبكي.
		-تَمَثَيِلُ النَسجِيلاتِ:
		مِفرق الكبون مِنْ الكبون ا
	0.5*2	عبرن الراحة م - 70 PPSE
		ا (a) المداد (a) المداد (b) المداد (c)
		- التقسير: الو هن العضلي يعود الى تعطيل عمل الاستيل كولين عن طريق تتبيت جزيئات كالأجسام المضادة التي
	0.75	تنتجها العضوية في الحالة المرضية و التي تنافس الأستيلكولين على الارتباط بمستقبلاته الغشائية و بالتالي عدم نشوء كمون بعد مشبكي منبه على مستوى المشابك العصبية العضلية و عدم حدوث تقلص العضلة و
		بالتالي السّلل.

		التمرين الثالث: (8 نقاط)
		1- تبيان أن نتائج الوثيقة 01 تتوافق مع أن تحويل الطاقة الضوئية إلى طاقة كيميائية كامنة تتم في
		<u>I-مرحلتين:</u>
	0.5	المنحنى 01:
	0.3	2-في وجود الضوء: تقوم الكلوريلا بتثبيت الـ CO_2 وطرح O_2 بنسبة عالية وثابتة.
		حذف الضوء أدى إلى توقف انطلاق الـ O_2 مباشرة. * يدل ذلك على وجود تفاعلات تتطلب الضوء إنها المرحلة الكيموضوئية
		يدل دنك على وجود ند عرف تنصب المعلوع إله المرحد الميمونعونية المنحني 02:
1.75		وروبي عند حذف الضوء يستمر تثبيت الـ CO_2 خلال 20 ثا
	0.5	*-يدل ذلك على وجود تفاعلات لا تتطلب الضوء يتم فيها تثبيت الـ CO2إنها المرحلة الكيموحيوية.
		2-استخراج الأدلة:
		- من ملاحظة التركيب الكيموحيوي لكل من التيلاكوييد والستروما يظهر أن:
	0.25	- اختلاف التركيب الكيموحيوي لكل من التيلاكوييد والستروما يدل على اختلاف الوظيفة حيث من
	0.25	المعطيات نلاحظ أن:
	0.25	- التيلاكوييد تحتوي على أصبغة ضوئية حساسة للضوء يدل ذلك أن المرحلة الكيموضوئية تتم على
	0.25	مستوى اغشية التيلاكوبيد . احترا التيرا علم النير ومونط Park الشنت المركب دارجا أنه المرابع التيران والمرابع التيران المرابع التيران والم
	0.23	احتواء الستروما على إنزيم Rubisco المثبت للـ CO_2 يدل على أن المرحلة الكيموحيوية تتم على مستوى الستروما.
		مسوی استروند. O_2 فی الوسط: O_2 فی الوسط:
		خلال الفترة $A-B$: رغم وجود الضوء تتناقص كمية الـ O_2 لاستهلاكه من طرف الميتوكوندري أثناء
	0.5	التنفس وعدم حدوث تفاعلات المرحلة الكيموضوئية لغياب مستقبل الالكترونات.
		في الفترة B-C و B-E:
	0.5	زيادة معتبرة للـ O_2 في الوسط تفسر بحدوث تفاعلات المرحلة الكيموضوئية لوجود الضوء ومستقبل
	0.5	اصطناعي للالكترونات واستمرار عملية التنفس غير أن نسبة الـ $ m O_2$ المحررة أكبر من النسبة المستهلكة
	0.5	أثناء التنفس. المتعدد الشياط المتعدد
	0.5	استخراج الشروط: تتمثل شروط انطلاق الـ O_2 في الضوء ومستقبل الالكترونات بالاضافة إلى التيلاكوييا O_2 . التفاعلات الموافقة لانطلاق الـ O_2 والمحفز بالضوء:
4.25	0.25	أكسدة الماء ضونيا:
		إرجاع المستقبل النهائي:
	0.25	2NADP+ +4H+ +4é منوء ويخضور 2NADH.H+
		بجمع المعادلتين:
	0.5	2NADP+ +2H ₂ O ضوء ويخضور 2NADPH.H+ +O ₂
		<u>3 تحليل المنحني:</u> التركي المناه المنطقية المناه المنطقية المنطق المناه المنطق المنطقة المناه المنطقة المناه المن
		يمثل المنحنى تغيرات تركيز (H^+) في الوسط الخارجي بدلالة الزمن في الضوء والظلام. $*$ الجزء $(1 + 1)$: ثبات تركيز (H^+) في الوسط الخارجي في الظلام.
	1	المجرع (١٠ ب). ببت تركير (١٦) تي الوسط الخارجي في المصارم. * الجزء(ب ج):تناقص سريع للبروتونات في الوسط الخارجي في الضوء.
		٠٠٠
	0.25	* الجزء الذي يتم فيه تركيب الATP هو الجزء (ج د).
	0.5	ـ التعليل: خروج البروتونات عبر الكريات المذنبة مما يسمح بتنشيط انزيم تركيب الـ ATP الذي يعمل
		على فسفرة الADP إلى ATP وهذا مقابل دخول البروتونات من الحشوة (المادة الاساسية) إلى تجويف
		الكييس عن طريق النقل الفعال.

		التمرين الثاني: (7 نقاط)
		-1.تسمية الأجزاء المفصولة مع تحديد المعيار المعتمد:
	6*0.25	نواةالمعيار يتركب من نسبة عالية من ADN ونسبة قليلة من البروتينات و الـ ARN
		2ميتوكونديالمعيار استهلاك كبير للـ O و انتاج وافر للـ ATP
		3بوليزومالمعيار احتوائها على نسبة عالية من ARN ونسبة تركيب البروتين عالية
3		ا-2.دور كل منها في تركيب الانزيم (البروتين):
		النواة :تحتوي على المعلومات الوراثية و هي مقر استنساخ و نضج mARN
	3*0.5	الميتوكوندري :توفير الطاقة لألية تركيب البروتين
		بوليزومات(الشبكة الهيولية المحببة):مقر تركيب البروتين في الهيولي
		.1-II
	0.5	E+S+SES SE+P+P
	0.5	1 2 1 2 1 2
	0.5	نوع التفاعل الحيوي هو تفاعل تحويلي لمادتين II-2.الشرح:
2.	0.25*2	ناير هاده المنينولورات المفاهد على تشاك إلريم و اداء هو ناير تنافسي تبيني عيك ان هاده المنينولورات لمنك بنية فراغية مشابهة لمادة PEP لذلك تنافسها على الموقع الفعال للانزيم و تتثبت عليه لوجود تكامل بنيوي بين الموقع
	0.20 2	بي عربي مسد. به عدد ۱۵۰ عدد التفاعل . الفعال و الجزء البنيوي للركيزة فلا يحدث التفاعل .
		الاستنتاج:
	0.25*2	ع هذه المادة تثبط عمل انزيم E PSPS وهذا <mark>سيمنع تشكيل المادة الاولية</mark> المشرفة عن تركيب بعض الاحماض الامنية
		(العطرية) الضرورية للنبات و بالتالي موت الاعشاب
		II -3*التحليل المقارن لنشاط الانزيمين E1و E2:
	0.05	- تمثل الوثيقة النشاط الانزيمي بدلالة مادة الغلوكوفوزات في وجود انزيم 1 و 2 حيث نلاحظ:
	0.25 0.5	يكون نشاط الانزيمي لE1 اعظمي عند غياب غليكوفوزات و يبقى ثابت حتى في وجودها بالتراكيز الضعيفة حتى يصل
2	0.5	تركيزها الى حوالي (0.9 Mm)ثم يبدأ بالتناقص تدريجيا و هذا مع تزايد في تركيز غليكوفوزات اما النشاط الانزيمي لE2
		يكون اعظمي في غياب غليكوفوزات ثم يتناقص نشاطه تدريجيا مع تزايد تركيز المادة السامة الى ان ينعدم النشاط
		كليا في التركيز (0.9Mm)
	0.25	الاستنتاج:
		السلالة (النباتات)المعدلة وراثيا تتأثر ايضا بمادة غليكوفوزات لكن في التراكيز العالية
	0.5	*يمكن استعمال مبيد الاعشاب دون القضاء على نبات الصوجا بتراكيز ضعيفة لا تتعدى 0.9Mm

التمرين الثالث: (80 نقاط):

		ر 108 (
0.75	2x0.25 0.25	I – 1/ المقارنة: ـ المصل لا يؤثر على الخلايا السرطانية . ـ تعمل الخلايا اللمفاوية على تخريب (تدمير) الخلايا السرطانية . نمط الاستجابة المناعية : خاوية 2 - الرسم : (0.5 لتنظيم الرسم و 1 على البيانات)
1.5		لمفاوية سامة للتو المفاوية سامة حويصلات عدد مستضد الخلية السطانية من قبل LTc تعرف مزدوج بين الخلية السطانية و LTc السطانية من قبل LTc السطانية و LTc السطان
1	0.25 0.75	II – 1) - أهمية العلاج بالانترلوكين: - تنشيط الاستجابة المناعية الخلوية ضد الخلايا السرطانية (الورم) . التوضيح: الحقن المتزايد للأنترلوكين يؤدي إلى زيادة عدد اللمفاويات LTc التي تعمل على تدمير الخلايا السرطانية تراجع الورم .
1.25	0.5 0.75	2) - العناصر المستهدفة من طرف فيروس VIH: هي اللمفاويات LT4. - التفسير -: انخفاض تركيز الأجسام المضادة عند الشخص المصاب يعود إلى استهداف فيروس VIH للمفاويات LT4 الضرورية لتنشيط اللمفاويات LB التي تتكاثر و تتمايز إلى بلازميات منتجة للأجسام المضادة.
1.5	0.5 2x0.5	3)- أثر الدواء في الحد من تدهور صحة المصاب: زيادة في عدد اللمفاويات (LT4) التي تؤدي إلى تنشيط الاستجابات المناعية نتيجة: – منع الخلايا المصابة (LT4) من إنتاج الفيروس (تكاثر الفيروس). – منع الفيروس من الالتصاق أو التثبت بالخلايا (LT4) السليمة.
2	4x 0.5	III) - النص العلمي: يبرز دور البروتينات يتمثل دور البروتينات في : ـ مؤشرات الذات (CMH - Rh - ABO): تحدد الهوية البيولوجية للفرد تسمح بتمييز الذات عن اللاذات. ـ عوامل انتقاء و انتخاب (المستقبلات BCR - TCR) و مستقبلات الانترلوكين): التعرف على المستضد ، و التحسيس . ـ عوامل تحفيز (الانترلوكينات) : تحفيز و تنشيط الخلايا المناعية . ـ عوامل التدمير أو الإقصاء أو التنفيذ هي : • الأجسام المضادة : إبطال مفعول المستضد . • البروفورين : يشكل قنوات على مستوى غشاء الخلية المستهدفة مسببا الصدمة الحلولية . • الإنزيمات الحالة : تفكيك المستضد . • المستقبلات الغشائية للبالعة الكبيرة : تسهيل بلعمة المعقدات المناعية .
	0.25 8x	إجابة أخرى محتملة: يتمثل دور البروتينات في الدفاع عن الذات: المستقبلات الغشائية للبالعات الكبيرة تسمح بالتثبت بالمعقد المناعي. الأجسام المضادة ترتبط بالمستضد و تثبط نشاطه. الأجسام الانترلوكين IL2 تسمح بتحفيز الخلايا المناعية. الكريات الانترلوكين BCR تسمح بالتعرف على الببتيد المستضدي. الكريات الانترلوكين TCR تسمح بالتعرف على الببتيد المستضدي. الكريات المفاويات TA تسمح بالتعرف المزدوج على المعقد CMHII- الببتيد المستضدي. الكريات البورفورين تشكل قنوات حلولية تسمح بحدوث صدمة حلولية للخلايا المصابة.