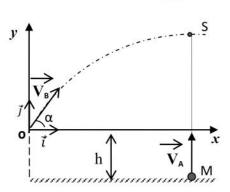

ثانوية احمد بن عبد الرزاق الامتحان الثاني في العلوم الفيزيائية 3 تقنى رياضي - 3رياضي السنة الدراسية 2020/2019 المدة: 02سا

الجزء الاول: فيزياء (12نقطة)

التمرين الاول: (06 نقاط)

في مسابقة للرمايةنقذف في اللحظة t=0s من النقطة (O) على ارتفاع t=1.5m من سطح الأرض جسما B نعتبره نقطة مادية بسرعة t=0s مسابقة للرمايةنقذف في اللحظة t=0s من النقطة t=0s من النقطة t=0s وبعد t=0s تصنع مع محور الفواصل لمعلم (t=0s) في المستوى الشاقولي زاوية t=0s وبعد t=0s نعتبره نقطة مادية من النقطة t=0s من النقطة مادية من النقطة مادية من النقطة مادية من النقطة t=0s من النقطة مادية م



 $sin\alpha.cos\alpha = \frac{sin2\alpha}{2}$ عطى العلاقة التالية: .B مسار الجسم

(0y) على المحور A على المحور $y_A(t)$ على المحور $y_A(t)$

4. احسب المسافة بين الجسمين A و B لحظة مرور B بالنقطة (S).

5. كم يجب أن تكون قيمة السرعة V_2 حتى يصطدم الجسمان في النقطة (S) خلال صعود الجسم A .

التمرين الثاني: (06 نقاط)

في التركيب المقابل (الشكل 1) لدينا دارة تسلسلية تشتمل على : وشيعة (L,r) ناقلين أوميين احدهم مقاومته متغيرة ، R و R مقاومته مجهولة ،

مولد مثالي يعطي توتر ثابت E و قاطعةK.

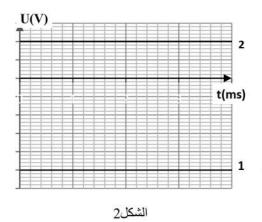
R₂
L,r
R₁
V₁
V₂

 $100 {
m mA}$ عند اللحظة $t=0~{
m s}$ نغلق القاطعة و بعد مدة t يستقرمؤشر جهاز الامبرمتر على قيمة $t=0~{
m s}$ فيظهر على شاشة الراسم الاهتزازي المهبطي المنحنين $t=0~{
m s}$ (انظر الشكل $t=0~{
m s}$) حيث الحساسية الشاقولية بالنسبة للمدخل $t=0~{
m s}$ $t=0~{
m s}$ و بالنسبة للمدخل $t=0~{
m s}$

1- ارفق لكل عنصر كهربائي المنحني الموافق مع التعليل

مع التوضيح \mathbf{R}_1 , \mathbf{r} , \mathbf{E} من التوضيح -2

 y_1 عند اللحظة نعتبرها كمبدا للازمنة $y_2 = 0$ نفتح القاطعة y_3 فيظهر على شاشة الراسم الاهتزازي عند المدخل y_3 المنحنى (انظر الوثيقة الشكل 3) أ - بتطبيق قانون جمع التوترات بين ان المعادلة التفاضلية للتوتر الكهربائي بين طرفي الوشيعة تعطى بالشكل :


$$\frac{dU_{b}(t)}{dt} + \frac{R_{1} + R_{2} + r}{L}.U_{b}(t) = 0$$

 $U_b(t) = A.\exp(-\frac{t}{ au_1})$: ب -تقبل المعادلة التفاضلية السابقة حلا عبارته من الشكل المعادلة التفاضلية السابقة حلا عبارة كل من $au_b(t) = A.\exp(-\frac{t}{ au_1})$ استنتج عبارة كل من $au_b(t) = A.\exp(-\frac{t}{ au_1})$

ج المتنتج قيمة ثابت الزمن au_1 مع توضيح الطريقة ثم احسب قيمة كل من au_2 مقاومة الناقل و au_2 ذاتية الوشيعة .

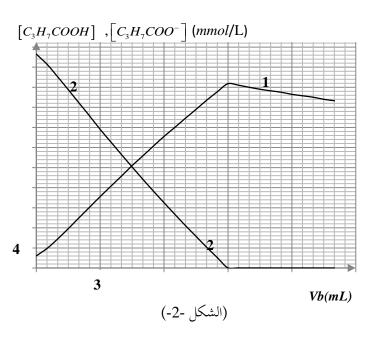
4- نعيد التجربة بضريط قيمة المقاومة المتغيرة عند قيمة $\mathbf{R_1}$ فتصبح قيمة ثابت الزمن للدارة $\mathbf{T_2}$ يساوي 4.5ms. بين ان عبارة قيمة المقاومة $\mathbf{R_1}$ تحقق العلاقة التالية ثم احسبها :

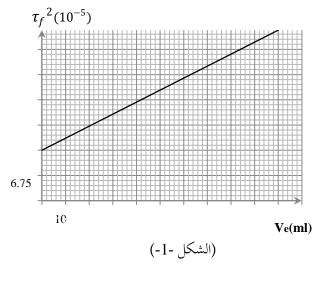
$$R_{1}^{'} = L.\left(\frac{\tau_{1} - \tau_{2}}{\tau_{1}..\tau_{2}}\right) - R_{1}$$

الجزء الثاني: كمياء

التمرين التجريبي: (08 نقاط)

حمض البوتانويك C_3H_7COOH و هو احد مكونات الزبدة كما يمكن ان نجده في الجبن و في مكونات العصارة المعدية له رائحة قوية و كريهة -I


2.94 المحلول القيمة pH وحجمه V_0 وحجمه C_0 وحجمه تياس pH المحلول القيمة المولى أعضر المولى عند المولى المحلول المولى المحلول المحل


- 1. أكتب معادلة تفاعله مع الماء و استنتج عبارة نسبة التقدم النهائي au_{f0} بدلالة pH وتركيزه c_0 ثم احسبه مادا تستنتج
 - ين ان ثابت الحموضة $k_a = { au_f}^2.C$ يعقق العلاقة يحقق العلاقة يكتب المحلول .2
- ر. نسبة التقدم النهائي au_e نسبة التقدم النهائي au_e نسبة التقدم النهائي على محلول (S) تركيزه au_e حجمه au_e بين ان عبارة نسبة التقدم النهائي au_e . au_e نسبة التقدم النهائي au_e . au_e العلاقة : au_e au_e . au_e . au_e au_e العلاقة : au_e au_e . au_e au_e au_e . au_e au_e au_e . au_e au_e au_e au_e au_e . au_e au_e au_e au_e . au_e au_e
- V_0 , V_0 , V_0 , استنتج قيمة كل من V_0 . استنتج قيمة كل من V_0 . استنتج قيمة كل من V_0 . V_0

II - دراسة عن طريقة معايرة PH

نأخذ حجما V_A =20ml متر الى قيمة 3.62 ، ونعايره بواسطة محلول نأخذ حجما V_A =20ml متر الى قيمة S_I من محلول مائي S_I عض البوتانويك تركيزه المولي C_a فيشير جهاز C_B من متروكسيد الصوديوم $(Na^+ + OH^-)$ تركيزه المولي (S_B) مثل المنحنى البياني لتطور التراكيز المولية (S_B) مثل المنحنى البياني لتطور التراكيز المولية (S_B) مثل المنابع المضاف للمزيج (الشكل) -2-)

- 1 اكتب معادلة التفاعل أثناء المعايرة وارفق كل منحني بالفرد الموافق مع التعليل
- S_I بطریقتین مختلفتین مع التوضیح ثم احسب الترکیز المولی C_a للمحلول S_I بطریقتین مختلفتین مع التوضیح ثم احسب کمیة مادة الحمض في المحلول S_I
 - حدد قيمة pKa لثنائية (اساس/ حمض) لحمض البوتانويك مع التوضيح -3
 - . علما ان المحلول S_1 حضر باذابة m=15g من الزبدة و تمديده 5 مرات. استنتج m_1 كتلة الحمض الموجودة في هده العينة من الزبدة .
- 5- تعتبر الزبدة غير صالحة للاستهلاك اذا تجاوزت النسبة الكتلية لحمض البوتانويك في الزبدة 4% . ماذا تستنج بالنسبة لصلاحية استهلاك هذه العينة من الزبدة . تعطى 1^2C , 1^4H , 1^6O

القسم:	الوثيقة المرافقة : (تعاد مع ورقة الاجابة) الاسم:
	<u>التموين</u> ا لثاني (الشكل -3-)
	U(V) 5 t(ms)
القسم:	الوثيقة المرافقة : (تعاد مع ورقة الاجابة) الاسم:
	<u>التمرين الثاني</u> (الشكل -3-)
	U(V) 0 -2 -2