السنة الدراسية 2017 / 2018

ثانوية معنصر أونيس / عين كرشة

المستوى: 3 علوم تحريبية

الحتبار في مادة: الرياضيات

التمرين الأول:

كيس به 12 كرية متماثلة لا نميز بينها عند اللمس ، منها 3 بيضاء و 4 سوداء و 5 حمراء .

- 1) نسحب عشوائيا من الكيس 3 كريات في ان واحد .
- أ- أحسب احتمال الحصول على ثلاث كريات من نفس اللون.
 - ب- أحسب احتمال الحصول على الأقل على كرية بيضاء .
- ج- أحسب احتمال الحصول على ثلاث كريات مختلفة اللون مثنى مثنى .
- يلكن X المتغير العشوائي الذي يرفق بكل عملية سحب عدد الألوان المتحصل عليها .
 - . E(X) عرف قانون الاحتمال للمتغير العشوائي X، واحسب أمله الرياضياتي

التمرين الثاني:

. $(O; \overrightarrow{u}, \overrightarrow{v})$ المستوي المركب منسوب الى المعلم المتعامد و المتجانس

أجب بصحيح أو خطأ مع التبرير على كل سؤال مما يلي:

- لاحقة z التي تحقق M نعتبر النقطة M لاحقتها z النقطة z التي تحقق z التي تحقق z الدائرة التي مركزها z ونصف قطرها z .
 - . $\overline{z} = (2i-7)(i-1)$: هو العدد المركب z = (2i+7)(i+1) هو العدد المركب (2z = (2i-7)(i-1)
 - . $\frac{\pi}{2}$ تساوي $ke^{-i\frac{\pi}{2}}$ ليكن k عدد حقيقي سالب تماما ، ان عمدة العدد المركب و $ke^{-i\frac{\pi}{2}}$
 - . $z_{D}=-i$ و $z_{C}=-1$ ، $z_{B}=i$ ، $z_{A}=1$: و D لواحقها على الترتيب (4 C
 - . C النقط ذات اللاحقة z بحيث يكون $z+i\over z+1$ حقيقيا هي : المستقيم (z0) باستثناء النقطة
 - . $\frac{c}{b} = \sqrt{2}e^{i\frac{\pi}{4}}$: يكن النقطتين b و b التكن النقطتين b و b التكن النقطتين b و متساوي الساقين . b و متساوي الساقين .

التمرين الثالث:

.
$$g(x) = \frac{x+1}{2x+1} - \ln x$$
 : كما يلي $g(x) = \frac{x+1}{2x+1} - \ln x$ نعتبر الدالة العددية $g(x) = \frac{x+1}{2x+1} - \ln x$ المعرفة على المجال $g(x) = \frac{x+1}{2x+1} - \ln x$

1) أدرس اتجاه تغير الدالة g.

.
$$]0,+\infty[$$
 على $]0,+\infty[$ ثم استنتج إشارة على $]1,8;1,9[$ ثم المجال $]0,+\infty[$ ثم استنتج الشارة على $]0,+\infty[$

.
$$f(x) = \frac{2\ln x}{x^2 + x}$$
 : كما يلي $= [0, +\infty)$ المعرفة على المجال $= [0, +\infty)$ المعرفة على المجال $= [0, +\infty)$

. $(O;\vec{i}\;,\vec{j}\;)$ ستجامد و المتعامد و المستوي المستوي المنسوب الى المعلم المتعامد و المتجانس (C_f)

. احسب نهایة f عند 0 وعند $\infty+$ ، فسر النتیجتین بیانیا (1

.
$$f'(x) = \frac{2(2x+1)}{(x^2+x)^2} \times g(x)$$
 ، $]0,+\infty[$ من المجال $]0,+\infty[$ عدد حقیقی x من المجال $]0,+\infty[$

. f استنتج اتجاه تغیر الداله f

. f الدالة f شكل جدول تغيرات الدالة f (α) = $\frac{2}{\alpha(2\alpha+1)}$: بين أن بين أن

. ($f\left(lpha
ight) pprox 0.23$ أرسم بعناية المنحنى (C_f) . (C_f

انتهى الموضوع