الجم هُوريكُ الْجَزَائريكَ الْديمقر اطية الشعبية

الثانوية الجديدة رقم 02 الابيض سيدي الشيخ دورة: 2018 ىودە مىسىمي 2018

وزارة التربية الوطنية امتحان بكالسوريا التعليم الثانوي الشعبة: تقني رياضي

اختبار: مسادة الرياضيات

المدة: 04 ساعات

على المترشح ان يختسار احد الموضوعين التاليين

للوضدوع الاول

ﷺ التّمرين الأوّل (04نقاط):

 $(Z+1-\sqrt{3})(Z^2+2Z+4)=0$ المعادلة $(Z+1-\sqrt{3})(Z^2+2Z+4)=0$ المعادلة $(Z+1-\sqrt{3})(Z^2+2Z+4)=0$

المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(o;\vec{u},\vec{v}\right)$ لتكن النقط B ; C A التي لواحقها على

 $Z_C=\overline{Z_B}$; $Z_B=-1-i\sqrt{3}$; $Z_A=-1+\sqrt{3}$:الترتيب

بين ان: $(Z_C-Z_A)=i$ ثم استنتج طبيعة المثلث ABC و احسب مساحته (2

 $L = rac{Z_C - Z_A}{Z_C}$: الشكل الجبري العدد المركب العدد المركب على الشكل الجبري العدد المركب

 $anrac{\pi}{12}$ بين ان $anrac{\pi}{12}+i\sinrac{\pi}{12}$ ثـم استنتج القيمة المضبوطة لـ $anrac{\pi}{12}$

نعتبر التحويل النقطي S الذي يحول النقطة M ذات اللاحقة Z الى النقطة M ذات اللاحقة $Z'=(Z-Z_B)L+Z_B$ بعبارته المركبة كما يلي $Z'=(Z-Z_B)L+Z_B$

4-۱)-بین ان ۶ تشابه مباشر یطلب تحدید عناصره الممیزة

 $S \circ S$ لتكن النقط; A على الترتيب بالتحويل B ; C صور النقط التكن النقط

ب)-احسب مساحة المثلث ا ١٨٠٨

◄ التمرين الثانى: (5 نقاط)

63x+5y=159.....نعتبر المعادلة ig(Eig) ذات المجهولين x و y حيث:

ا المعادلة (E) تقبل حلولا المعادلة (E) المعادلة الم

(E)بـبرهن انه اذا كانت الثنائية (x;y)حـــلا للمعادلة (E) فــان $x\equiv 3$ أــم استنتج حلول المعادلة بــابرهن انه اذا كانت الثنائية (x;y)

عدد طبيعي يكتب $\overline{\beta}$ في نظام التعداد ذي الاساس 7 و يكتب $\overline{\beta}$ في نظام التعداد ذي الاساس 5 و يكتب الاساس 5

عشري (a+3) عيين lpha و etaثم اكتب العدد (a+3) عيد (2

5 ادرس حسب قيم العدد الطبيعي n باقي القسمة الاقليدية للعدد 3^n على -1-1

(x;y)ب)-عين قيم العدد الطبيعي n حتى يقبل العدد $x^{y}+4n+1438^{2018}$ القسمة على $x^{y}+4n+1438^{2018}$ حلول المعادلة $x^{y}=x$ عدد طبيعي

```
التّمرين الثّالث <u>(05نقساط):</u>
```

يحتوي كيس على 3 كرات خضراء تحمل الرقم 0 وكرتين حمراوين تحملان الرقم 5و كرة سوداء تحمل الرقم α حيث α عدد طبيعي غير معدوم و يختلف عن 5و 0

(كل الكريات لا نميز بينها عند اللمس)

نُسحب 3 كرات في آن واحد من هـذا الكيس.

1)-ماهو عدد طرق سحب 3 كرات بهذه الصيغة.

2)- أحسب أحتمال الحوادث التالية : A " الحصول على 3كرات من نفس اللون "

" الحصول على 3كـرات الوانها مختلفة $^{\prime\prime}$

ייکرتان فقط من نفس اللون יי $\,C\,$

X المتغير العشوائي الدي يرفق بكل سحب مجموع الارقام التي تحملها الكرات الثلاث X

-4 أ حدد قيم المتغير العشوائي -4

E(X) بـ عـرف قـانون الاحتمال للمتغير العشوائي Xو احسب امله الرياضياتي بـ $\dot{}$

E(X)=20: جـمـاهي قيمـة lphaحتى يكون

<u>التّمرين الرابع (06نقاط):</u>

 $g(x) = (x-1)e^x - 1$:باولا:نعتبر الدالة المعرفة على \mathbb{R}

g ادرس تغیرات الدالــة 1

 $1.2 \! \prec \! lpha \! \prec \! 1.3$ اثبت ان المعادلة $g(x) \! = \! 0$ تقبل حالا وحيدا -2

x استنتg(x) اشارة اشارة -3

نعتبر الدالة f الدالة المعرفة على \mathbb{R} كما يلي: $f\left(x
ight)=rac{2x}{e^x+1}$ و ليكن fتمثيلها البياني في

 $\left(oldsymbol{O}; oldsymbol{i}; oldsymbol{j}
ight)$ المستوي المنسوب الى المعلم المتعامد والمتجانس

 $\lim_{x o +\infty} f(x)$ و $\lim_{x o -\infty} f(x)$: احسب النهايتين $\int_{-\infty}^{\infty} f(x) \cdot \int_{-\infty}^{\infty} f(x) \cdot \int_{-\infty}^{\infty}$

 $f'(x) = rac{-2g(x)}{\left(e^x+1
ight)^2}$: بین انه من اجل کل عـدد حقیقی غیر معـدوم x

ج) - حدد اتجاه تغیر الدالیة f شکل جدول تغیر اتها.

f(lpha) بين ان f(lpha)=2(lpha-1) ثم اعط حصرا للعدد (۱-2

 $-\infty$ با المستقيم (C_f) المعادلة y=2x مستقيم مقارب المنحنى بابين ان المستقيم (Δ)

 (Δ) ادرس وضعية المنحنى (C_f) بالنسبة الى جـ)-ادرس

 $f\left(-lpha
ight)=-2$:ابین ان-3

بين ان المنحنى (C_f) يقبل مماسا (T) في النقطة ذات الفاصلة $-\alpha$ موازيا لـ (Δ) يطلب ايجاد معادلة له

(T)و (Δ) انشى كل من (C_f) و المقارب (4)-(4

 $2x\left(rac{1}{e^x+1}-1
ight)=m$: المعادلة على المعادلة m عدد واشارة حلول المعادلة والمعادلة m

للوضروع الثابي

<u>التّمرين الأوّل (04نقاط):</u>

 $f\left(x
ight)=rac{1}{2}\sqrt{x^2+3}$:نعتبر الدالة العددية المعرفة على المجال المجال يلي:

ادرس تغیرات الدالسة f شمکل جدول تغیراتها.

 $f(x) \geq 0$:بین انه من اجل کل عدد حقیقی x من $[0;+\infty]$ فان:

 $m{U}_{n+1} = fig(m{U}_nig)$ و $m{U}_0 = 0$ يلي: المتالية العددية المعرفة على $m{N}$ كما يلي: المتالية العددية المعرفة على المتالية العددية المعرفة على $m{U}_n$

 U_2 ا-احسب الحدين U_1 و U_2

 $0 \leq U_n \prec U_{n+1} \prec 1$ بـ) بين انه من اجل كل عـدد طبيعي n فـان:

 $\lim_{n o +\infty} U_n$ بستنتج ان المتتالية متقاربة $ig(U_nig)$ ثـم احسب -

: $V_n = U_n^2 - 1$ حيث n حيث المعرفة من أجل كل عــــدد طبيعي المعرفة من أجل كا

. البيّن أنّ (V_n) متتالية هندسية يُطلب تحديد أساسها وحسدها الأول.

nبدلالـة u بدلالة بالم إستنتج عبارة بالالـة بالماكتب V_n بدلالـة بالماكتب بالماكت

 $S_n = ig(U_0-1ig)ig(U_0-1ig)+ig(U_1-1ig)ig(U_1-1ig)+.....+ig(U_n-1ig)ig(U_n-1ig)$: n نضع من اجل کل عدد طبیعی s_n بدلالة جـ)-أحسب s_n بدلالة با

التمرين الثاني (05 نقاط):

3x-7y=14.....(E) : نعتبر في مجموعة الاعداد الصحيحة المعادلة

(E) المعادلة $(x_0;y_0)$ الذي يحقق : $x_0^2+y_0^2=50$ ثم حـل في $(x_0;y_0)$ المعادلة $(x_0;y_0)$ عين الحل الخاص $(x_0;y_0)$ عند الخاص الخاص ((x,y) عند الممكنة لـ (x,y) حتى يكون (x,y) قاسما لـ (x,y)

7 ادرس حسب قيم العدد الطبيعي n بواقي قسمة 4^n على حال-ادر

 $_{7}$ على $_{2}$ على $_{3}$ على $_{3}$ على $_{4}$ على $_{3}$

 $A_n = 4^n + 4^{n+1} + 4^{n+2} + n - 2$ ليكن العدد الطبيعي A_n حيث:

 7 على ماهو باقي قسمة العدد: $A_{2018}-A_{1439}$ على 1

 $2012 \prec n \prec 2020$:حين قيم العدد الطبيعي n حتى يقبل A_n القسمة على 7 حيث: $n \prec 2020$

<u>التّمرين الثّالث (05نقساط):</u>

$$\left\{egin{aligned} Z_1+3Z_2=i \ Z_1+iZ_2=-4-i \end{aligned}
ight.$$
 و Z_2 حيث: Z_2 و Z_1

المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(o;\vec{u},\vec{v}
ight)$ لتكن النقط B ; C A ; التي لواحقها على

 $Z_C = 4 - 3i$; $Z_B = 1 + i$; $Z_A = -3 - 2i$ الترتيب:

C النقطة B الى النقطة B الى النقطة A و الذي يحول النقطة B الى النقطة BABC بـ)-اكتب على الشكل الاسي العدد المركب $rac{Z_A-Z_B}{Z_C-Z_B}$ شم استنتج طبيعة المثلث بـ $[A\,C]$ نرمز بG الى مركـز ثقل المثلث ABC و لتكن المتصف القطعـة عين كلا من Z_{G} و Z_{I} لاحقتي النقطتين G و I ثم بين ان النقط B ; G و I في استقامية GABCD نعتبر النقطة D نعتبر النقطة B بالنسبة الى المحدد بدقة طبيعة الرباعي $\left\|\overrightarrow{MA} + \overrightarrow{MC}
ight\| = 5\sqrt{2}$: لتكن (E) مجموعة النقط M من المستوي التي تحقق (E) النقطة C تنتمي الى (E)ب)-عين طبيعة المجموعة التمرين الرابع (66نقاط): $g(x) = 1 - \ln x + \left(\ln x
ight)^2$: لتكن g الدالة المعرفة على المجال $0; +\infty$ $\lim_{x o +\infty} gig(xig)$ و $\lim_{x o 0^+} gig(xig)$ 1-احسب $g'(x) = rac{-1+2\ln x}{x}$ ا)۔ بین انہ من اجل کل عدد حقیقی x من x من x عدد حقیقی x عدد حقیقی x انہ من اجل کل عدد حقیقی x من xب)- ادرس تغیرات الدالــة g ثــم شكل جــدول تغیراتها x جـ)-استنتج اشـــارة g(x) جسب قيم نعتبر الدالة المعرفة على المجال $[0;+\infty[$ كما يلي $f(x)=x-rac{\left(\ln x
ight)^2+\ln x}{x}$ وليكن والمجال نعتبر $\left | \overrightarrow{i}
ight | = 1cm$ في المستوي المنسوب الى المعلم المتعامد و المتجانس حيث في المستوي بین ان $\lim_{x \to 0} f(x) = +\infty$ بین ان بین ان انتیجة هندسیا ا $\int_{0}^{1} dx \, dx$ $\lim_{x o +\infty} f(x)$ بـ)-برهن ان $\lim_{x o +\infty} \frac{\left(lnx
ight)^2}{x} = 0$ بـ)-برهن ان $\left(t=\sqrt{x}
ight)$ يمكنك وضع $+\infty$ المستقيم $+\infty$ ذا المعادلة y-x=0 مقارب مائل للمنحنى $+\infty$ بين ان المستقيم (Δ) بجوار $+\infty$ (Δ) بالنسبة الى المستقيم بـ)-ادرس وضعية المنحنى (C_f) $f'(x) = 1 + rac{g(x)}{x^2}$:بین انه من اجل کل عـدد حقیقی x من $g(x) = 1 + rac{g(x)}{x^2}$ انه من اجل کل عـدد حقیقی ب) - استنتج اتجاه تغير الدائسة f شمكل جدول تغيراتها. $0.3 \prec \alpha \prec 0.35$ حيث α حيث ان المنحنى يقطع حامل محور الفواصل في نقطة فاصلتها α (C_f) و (Δ) من (Δ) و ب

F(1)=0 و التي تحقق F(1)=0 على المجال F(1)=0 على المجال F(1)=0 و المستقيم F(1)=0 المستقيمين اللذان براحسب بF(1)=0 المستقيمين اللذان براحسب بF(1)=0 و المستقيمين اللذان براحسب بF(1)=0 المستقيمين اللذان براحسب بF(1)=0 و المستقيمين اللذان براحسب بF(1)=0 التم للوضوع الثاني المحدد بالمنطق براحس ب