
بكالوريا تجريبي مقترح في مادة العلوم الفيزيائية المستوى: 3 ع ت الأستاذ: محفوظ صابر

السنة الدراسية: 2021 / 2022 المدة: 3 ساونه

الجزء الأول: (13 نقطة)

التمرين الأول: (06 نقاط)

R نحقق الدارة الكهربائية المبينة في الشكل المقابل والمكونة من ناقل أومي مقاومته R متغيرة ، وشيعة ذاتيتها L ومقاومتها الداخلية r ومولد مثالي للتوتر المستمر قوته المحركة الكهربائية E وقاطعة E .

K في اللحظة t=0 نغلق القاطعة

1- أ- بين أن المعادلة التفاضلية التي يحققها التوتر بين طرفي الناقل الأومي

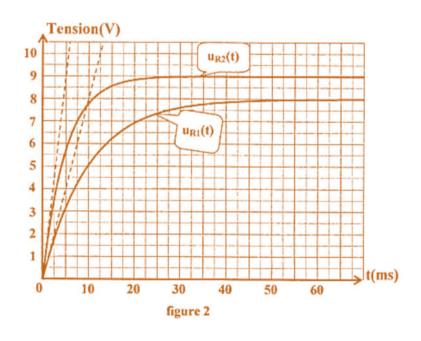
.
$$rac{di(t)}{dt} + rac{1}{ au}i(t) = rac{I_0}{ au}$$
 : نكتب على الشكل $U_R(t)$

ب- يعطى حل المعادلة التفاضلية بالعبارة $A(1-e^{-Bt})$ حيث A و B ثابتان يطلب تعيين عبارتيهما بدلالة ثوابت الدارة .

ج- استنتج العبارة الزمنية للتوتر U_R بين طرفي الناقل الأومي .

من أجل قيمتين مختلفتين $R_1=40\Omega$ و $R_2=R_1=40$ للمقاومة R_2 وباستعمال جهاز مناسب نحصل على المنحنيين $U_{R2}(t)$ و $U_{R2}(t)$ بدلالة الزمن .

3- اعط أعتمادا على المنابين المقابلين قيمة U_{R2} و U_{R2} في النظام الدائم ثم اعط عبارة كل منهما في النظام الدائم


ل المنحنيين بالشكل 2 بين أن : $\frac{R_1}{R_2} \cdot \frac{\tau_1}{\tau_2} = \frac{8}{9}$. حيث τ_1 و τ_2 ثابتي الزمن على التوالي المقابلين ل τ_2 و τ_1 ثابتي الزمن على التوالي المقابلين ل τ_2 . τ_2 و τ_2 .

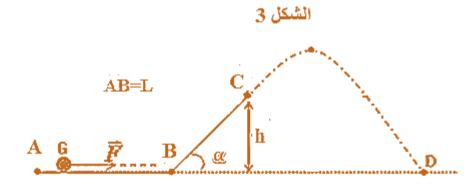
 au_2 عين بيانيا قيمة كل من au_1 و ح

. R_2 بـ استنتج قيمة

.~r=10 أ- بين أنr=10

E بين طرفي المولد L والتوتر بين طرفي المولد

التمرين الثاني: (07 نقاط)


. F يتم جر جسم صلب كتلته m=80kg فوق سطح الأرض بواسطة حبل اتجاهه مواز للسطح حيث يطبق عليه قوة E ينطلق الجسم بدون سرعة ابتدائية من النقطة E.

عند الموضع Bيحرر الحبل ثم يصعد الجسم سكة BCمائلة بزاوية $\alpha=30^\circ$ بالنسبة للمستوى الأفقي، ثم يغادر ها عند النقطة C ليسقط في الموضع D (انظر الشكل3).

خلال جميع مراحل التمرين سندرس حركة مركز العطالة G للجسم ونفترض أنه: \checkmark خلال المسار ABنعتبر أن القوة f المطبقة من طرف الحبل تبقى ثابتة وأن جميع الاحتكاكات تكافئها قوة شدتها f=100N

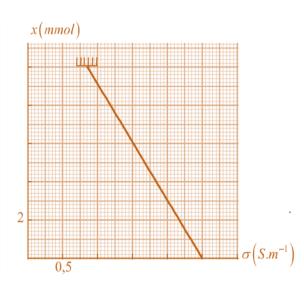
- $g=10m.\,s^{-2}$ نهمل جميع الاحتكاكات. نعطي: h=2m نعطي: BCD نهمل جميع الاحتكاكات. نعطي: -1 ما هو المرجع المناسب لدر اسة حركة الجسم الصلب ؟ عرفه . متى نعتبره غاليليا؟
 - 2- أذكر نص القانون الثاني لنيوتن .
 - AB على المسار a عبارة التسارع a
 - أ- بتطبيق القانون الثاني لنيوتن .
 - ب- بتطبيق مبدأ إنحفاظ الطاقة
- 4- علما أن تسارع الجسم بين A و $A=1,1m.\,s^{-2}$ ؛ أستنتج قيمة شدة القوة F المطبقة من طرف الحبل

 - . D . يصل الجسم الى الموضع C بالسرعة v_{c} المحسوبة سابقا ليغادر الموضع D ويسقط قي الموضع . v_{c} بتطبيق مبدأ انحفاظ الطاقة أحسب قيمة السرعة v_{c} في الموضع .

الجزء الثانى: (07 نقطة) التمرين التجريبي: (07 نقاط)

المعطيات

 $25\,^{\circ}C$ المحاليل مأخوذة في الدرجة $k_a(C_nH_{2n+1}COOH/C_nH_{2n+1}COO^-)=1.26\times10^{-5}$ 1 g / mol مراج مي M(C)=12 g / mol مراج مي M(C)=12 g / mol


M(H)=1 g / mol , M(O)=16 g / mol , M(C)=12 g / mol

 $\lambda_{Na^+} = 5 \, ms \cdot m^2 \, / \, mol$

المقطر m=4.67 و تركيزه المولى m=4.67 في الماء المقطر M=4.67 في الماء المقطر M=4.67 في الماء المقطر M=4.67 في الماء المقطر و نحصل على محلول M=4.67 حجمه M=4.67 و له M=4.67 و تركيزه المولى M=4.67 .

pH = 2.9 وله $C_2 = \frac{C_1}{10}$ ولم تركيز المولي (S_2) نحضر محلولا (S_1) نحضر المحلول بالمحلول (S_1) نحضر محلولا المحلول (S_2) تحضر محلولا المحلول (S_1) نحضر محلولا المحلول المحلول (S_1) نحضر محلولا المحلول المحلول (S_2) نحضر محلولا المحلول المحلول (S_1) نحضر محلولا المحلول (S_2) نحضر محلولا المحلول (S_2) نحضر محلولا المحلول (S_2) نحضر محلولا (S_2) نحصر (S

- (S_2) هو حمض ضعيف في الماء ، ثم اذكر البروتوكول التجريبي لتحضير المحلول (S_2) .
 - 2. اكتب معادلة تفاعل الحمض مع الماء في المحلول (S_1) ، ثم احسب التركيز المولي للمحلول (S_1) .
 - 3. أوجد الصيغة المجملة للحمض (A) و أكتب صيغته نصف المفصلة ، واذكر اسمه.
- II. نمزج في حوجلة مزودة بجهاز التسخين المرتد $0.2\ mol$ من الحمض $0.3\ mol$ و $0.3\ mol$ من كحول $0.3\ mol$ المجملة C_3H_8O ونضيف للمزيج بعض القطرات من حمض الكبريت المركز في وم بالتسخين، وبعد مدة كافية لوصول التفاعل لحالة التوازن، بردنا المزيج وأضفنا له كمية من محلول كلور الصوديوم. و بعد عملية السكب و تنقية الأستر من الحمض بواسطة هيدروجين كاربونات الصوديوم $(Na^+ + HCO3^-)$ وجدنا كتلة الأستر (E).
 - 1. ما هو دور التسخين المرتد ، وما الفائدة من إضافة قطرات من حمض الكبريت المركز ؟
 - 2. ما الفائدة من إضافة محلول كلور الصوديوم ؟
 - 3. اكتب معادلة تفاعل الأسترة ، واذكر خصائص هذا التفاعل.
 - 4. احسب ثابت توازن هذا التفاعل ، واستنتج صنف الكحول ، و اكتب صيغته المفصلة .
 - 5. احسب مردود التفاعل ، و أذكر الطريقة التي نرفع بها المردود ونحصل على أستر نقى .
- $(Na^+ + OH^-)$ نمز t=0 عند t=0 عند t=0 عند t=0 مع t=0 مع من محلول لهيدروكسيد الصوديوم t=0 ونشكل حجما قدره t=0 . t=100 t=100 .
 - 1. اكتب معادلة التفاعل بين الأستر و هيدروكسيد الصوديوم. ما هو اسم هذا التفاعل ؟ اذكر خصائصه.
 - أنشئ جدول التقدم لهذا التفاعل
 - $x = f(\sigma)$ نتابع تطور التفاعل بواسطة قياس الناقلية النوعية للمزيج، و نمثل في البيان تقدم التفاعل بدلالة الناقلية النوعية أوجد من البيان :
 - . قيمة الناقلية النوعية σ_0 للمزيج المتفاعل قبل بدء التفاعل -
 - قيمة التقدم الأعظمي .
 - تيمة الناقلية النوعية في نهاية التفاعل، ثم احسب $\lambda_{C_n H_{2n+1}Coo^-}$
 - كانت الناقلية النوعية للمزيج $t=8\,min$ كانت الناقلية النوعية $\sigma=1.68\,s/m$
 - $t_{1/2}$ حدد قيمة زمن نصف التفاعل

