السنة الدراسية: 2017 / 2018

وزارة التربية الوطنية

المستوى: الثالثة رياضيات

مديرية التربية لولاية باتنة

المدة: (03) ثلاث ساعات

ثانوية محمد العيد آل خليفة

اختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول: (07 نقط)

أجب بصحيح أو خطأ مع التبرير في كل حالة من الحالات التالية:

$$S = \{0, \ln 2\}$$
 : في \mathbb{R} في $e^{|2x|+1} - 3e^{|x|+1} + 2e = 0$: مجموعة حلول المعادلة: $e^{|2x|+1} - 3e^{|x|+1} + 2e = 0$

(دون استعمال أي آلة حاسبة)
$$\ln(1.001) \approx 0.001$$
 و $e^{0.001} \approx 1.001$ الدينا: -2

$$\lim_{x\to+\infty} \left(\frac{\ln x}{x^n}\right) = 0 \quad \text{o} \quad \lim_{x\to+\infty} \left(\frac{e^x}{x^n}\right) = +\infty \quad \text{then} \quad n \in \mathbb{N} \quad -3$$

$$2.3g\left(x
ight)-xg'\left(x
ight)=0$$
 نعتبر الدالة \mathbb{R}_{+}^{*} فان: $g:x\mapsto x^{2.3}$ فان: $g:x\mapsto x^{2.3}$

$$y(0) = -1$$
 الدالة $u: x \mapsto e^{-2x} - 2$ الدالة $u: x \mapsto e^{-2x} - 2$ الدالة عند المعادلة التفاضلية: $y(0) = -1$

$$[2;+\infty[$$
 الدالة $v:x\mapsto \sqrt[3]{x^2-4}$ متناقصة تماما على المجال – 6

$$-\frac{1}{e\ln 3}$$
 هي $-\frac{1}{\ln 3}$ عند صغرى عند $w:x\mapsto x3^x$ قيمة حدية صغرى $w:x\mapsto x3^x$

التمرين الثاني: (06 نقط)

من أجل a و a عددان حقیقیان حیث: a < a < b نعرف المتتالیتین العددیتین a < a < b کما یلي:

$$u_{n+1} = \frac{2u_n v_n}{u_n + v_n}$$
 ، $u_0 = a$

$$v_{n+1} = \frac{u_n + v_n}{2}$$
 ، n و من أجل كل عدد طبيعي $v_0 = b$

 $v_n > 0$ و $u_n > 0$ فان n عدد طبیعي $u_n > 0$ و $u_n > 0$

.
$$w_n = v_n - u_n$$
 نضع: n عدد طبیعی n عدد عدد طبیعی – 2

$$0 \le w_{n+1} \le \frac{1}{2} w_n$$
 :أ) برهن أن

 $0 \le w_n \le \frac{b-a}{2^n}$ فان: n فان: n فان: n فان: n فان: n باستعمال الاستدلال بالتراجع، أثبت أنه من أجل كل عدد طبيعي

. متناقصة تماما و أن المتتالية
$$(v_n)_{n\in\mathbb{N}}$$
 متناقصة تماما و أن المتتالية $(u_n)_{n\in\mathbb{N}}$ متناقصة تماما - 3

$$(v_n)_{n\in\mathbb{N}}$$
 و $(u_n)_{n\in\mathbb{N}}$ و $(u_n)_{n\in\mathbb{N}}$

$$\lim_{n\to+\infty}v_n$$
 و $\lim_{n\to+\infty}u_n$ 5 – استنتج

التمرين الثالث: (07 نقط)

$$\begin{cases} f(x) = \left(\frac{e}{x}\right) \times 3^{\frac{-1}{x^2e}} \\ f(0) = 0 \end{cases}$$
 دالة معرفة على \mathbb{R} كما يلي:

5cm : الوحدة البياني للدالة f في المستوي المزود بالمعلم المتعامد و المتجانس $O(\vec{t}, \vec{f})$ التمثيل البياني للدالة المستوي المزود بالمعلم المتعامد و المتجانس المتعامد و الم

- - f(-x)+f(x)=0 فان: x فان: عدد حقیقی عدد من أجل كل عدد عدد حقیقی انه من أجل كل عدد حقیقی انه من أجل كل عدد حقیقی
 - . ب) أدرس قابلية اشتقاق الدالة f عند الصفر بقيم أكبر
 - $\lim_{x \to +\infty} f(x) \quad + \infty$
 - د) فسر النتائج السابقة هندسيا.

$$]0;+\infty[$$
 المجال على المجال $]0;+\infty[$ ثم أدرس إشارتها على المجال $]0;+\infty[$ غان: \mathbb{R}^* فان: \mathbb{R}^* فان: \mathbb{R}^* غان: \mathbb{R}^*

- $[0;+\infty[$ شكل جدول تغيرات الدالة f على المجال 4
- $0,48 < \alpha < 0,49$ حيث f(x)=1 حيث f(x)=1 حيث f(x)=1 حيث f(x)=1 حيث f(x)=1 حيث f(x)=1 عبد f(x)=1 حيث f(x)=1 عبد f(x)=1
 - $a\in\mathbb{R}_{+}^{*}$ عند النقطة ذات الفاصلة $a\in\mathbb{R}_{+}^{*}$ عند النقطة ذات الفاصلة $a\in\mathbb{R}_{+}^{*}$ للمنحنى $a\in\mathbb{R}_{+}^{*}$
- . من مبدأ المعلم (T_a) سن الموجد قيمة وحيدة للعدد الحقيقي الموجب تماما a و التي من أجلها يمر المماس وحيدة للعدد الحقيقي الموجب تماما
 - . (T_a) من أجل قيمة a المحصل عليها، أكتب معادلة المماس a
 - . $[0;+\infty[$ ثم أنشئ (C_f) ثم أنشئ (T_a) ثم أنشئ (ع
 - هـ) أنشئ (C_f) في المجال $[-\infty;0]$ مستعينا بالسؤال (C_f) ، مع التبرير .

. \mathbb{R}^* في $mx - e^{\frac{x^2e - \ln 3}{x^2e}} = 0$ ناقش بيانيا حسب قيم العدد الحقيقي $mx = mx - e^{\frac{x^2e - \ln 3}{x^2e}} = 0$

ملاحظة هامة:

- يمنع استعمال الآلة الحاسبة البيانية .
- رسم المنحنى البياني يكون على الورقة المليمترية مع احترام الوحدة البيانية المعطاة .
 - تنظيم ورقة الإجابة يؤخذ بعين الاعتبار .

الأستاذ: مراحي لزهر باتنة في: 05 ديسمبر 2017