

فرض في مادة العلوم الفيزيائية

المدة: 2

المستوى: السنة الثالثة ثانوي راع ت

التمرين الاول (12 نقاط)

نريد دراسة تغير السرعة الحجمية لتفكك الماء الاكسيجيني H2O2 بوجود وسيط و هو محلول يحتوي على شوارد الحديد الثلاثي +Fe³ . ننمذج التحول الكيميائى الحادث بالمعادلة الكيميائية التالية $2H_2O_2 = 2H_2O + O_2$

1/ حدد الثنائيتين (Ox / Red) الداخلتين في التفاعل و أكتب المعادلتين النصفيتين للاكسدة و الارجاع

2/ لدراسة تطور هذا التفاعل نأخذ حجما Vo = 10ml من الماء الاكسيجيني التجاري تركيزه المولي Co نضعه في بيشر ثم نمدده بإضافة ا $V_1 = 88$ من الماء المقطر و عند اللحظة t=0 نضيف للمحلول الممدد حجما $V_2 = 2$ من الوسيط

 $[H_2O_2]_0 = \frac{C_0}{10}$ هو المزيج هو أربين أن التركيز المولي الابتدائي للماء الاكسيجيني في المزيج هو

ب / أنشىء جدولا لتقدم التفاعل

ج / أكتب عبارة التركيز المولي [H2O2] للماء الاكسيجيني في المزيج خلال التفاعل بدلالة X و [H2O2] و x تقدم التفاعل

3 / لمتابعة تركيز الماء الاكسيجيني بدلالة الزمن نأخذ في أزمنة مختلفة عينات حجمها | V' = 10ml

نبردها مباشرة بالماء و الجليد ثم نعايرها بمحلول برمنغنات البوتاسيوم (-K+ + MnO4) المحمض تركيزه المولي

ا/ $C_3 = 2 \ 10^{-2} mol$ و نسجل حجما V_3 اللازم للتكافؤ فنحصل على جدول القياسات التالي

t(min)	0	10	20	30	45	60
V ₃ (ml)	18,0	9,0	5,2	3,1	1,6	1,0
[H ₂ O ₂](mmol/l)						

أ/لمادا نبرد العينات مباشرة بعد فصلها عن المزيج

ب / كيف نحصل على التكافؤ تجريبيا

 O_2 / H_2O_2 ; MnO₄- / Mn²⁺ هما أن الثنائيتين (Ox / Red) الداخلتين في التفاعل هما

أكتب المعادلتين النصفيتين للاكسدة و الارجاع ثم معادلة الاكسدة – إرجاع لتفاعل المعايرة

 $[H_2O_2] = rac{5}{2} rac{C_3V_3}{V'}$: التركيز المولي للماء الاكسيجيني في العينة عند نقطة التكافؤ يعطى بالعلاقة التالية

هـ / أكمل الجدول السابق و إستنتج التركيز المولي Co

و / أرسم المنحنى البياني لتغيرات تركيز الماء الاكسبجيني بدلالة الزمن أي: (H2O2] =f (t)

ن /عرف زمن نصف التفاعل ثم حدده بيانيا

ي / أعط عبارة السرعة الحجمية للتفاعل بدلالة [H2O2] ثم أحسب قيمتها في اللحظة T = 10min

التمرين الثاني (8 نقاط)

نريد إجراء متابعة زمنية لتحول كيميائي بين الالمنيوم Alو محلول حمض كلور الماء

(H₃O⁺ + Cl⁻) الذي ينمذج بتفاعل كيميائي تام معادلته $2AI + 6H_3O^+ = 2AI^{3+} + 3H_2 + 6H_2O$

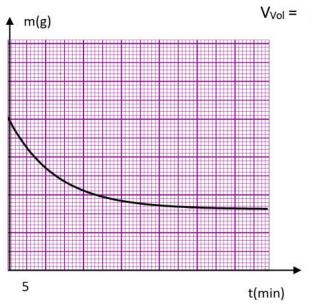
نضع في حوجلة قطعة من الالمنيوم Al كتلتها mo ثم نضيف إليها في اللحظة t=0 الحجم V=100ml من محلول حمض كلور الماء تركيزه المولى C.

لمتابعة تطور التفاعل الكيميائي عند درجة حرارة ثابتة و ضغط ثابت نسجل في كل لحظة t حجم غاز الهيدروجين المنطلق ثم نستنتج كتلة الالمنيوم المتبقية و ندون النتائج في الجدول التالي

6.00 3.00 4.00 5.00 7.00 t(min) 1.00 2.00 1.71 4.05 2.71 2.21 1.82 1.70 1.62 1.62 m(g)

قمنا برسم المنحنى البياني m = f(t)

1/ أ/ إنشئ جدول التقدم للتفاعل الحادث ب/ حدد المتفاعل المحد


ج/ أحسب كميات المادة الابتدائية $n_0(AI)$ و $n_0(AI)$ المتفاعلات ثم استنتج التركيز المولي $n_0(AI)$ ممض كلور الماء 2 / بين أن كتلة الالمنيوم المتبقية في اللحظة $t_{1/2}$ (زمن نصف التفاعل) تعطى بالعبارة

برهان هذه العبارة مطلوبة فقط للقسم 3 ر
$${\sf m}({\sf t}_{1/2)} = rac{m_0}{2} + rac{m_f}{2}$$

. حيث m_f هي كتلة الالمنيوم المتبقية في الحالة النهائية

- 3/ استنتج بيانيا t_{1/2}
- $V_{Vol} = \frac{1}{2VM} \frac{dm(t)}{dt}$: بين أن عبارة السرعة الحجمية للتفاعل تعطى بالعلاقة $\frac{1}{2VM} \frac{dm(t)}{dt}$
 - 5/ اوجد التركيب المولي لما t=t_{1/2}
 - AI^{3+} وجد العلاقة التي تربط بين السرعة الحجمية و سرعة تشكل t=0 أحسب قيمة سرعة تشكل AI^{3+} في اللحظة
 - 7/ ما هو تركيز شاردة الالمنيوم اللحظة عام /7

تعطى الكتلة المولية للالمنيوم M(Al) = 27g/mol

تصحيح الفرض الاول في مادة العلوم الفيزيائية

التمرين الاول:

$$H_2O_2 / O_2$$
 ; H_2O / H_2O_2

1/ تحديد الثنائيتين

$$H_2O_2 + 2H^+ + 2e^- = 2 H_2O$$

$$H_2O_2 = O_2 + 2H^+ + 2e^-$$

2 / أ : بين أن التركيز الابتدائي في المزيج يساوي : $[H_2O_2]_0 = \frac{c_0}{10}$: بعد التخفيف كمية المادة لا تتغير و منه

$$C_0V_0 = [H_2O_2]_0 V_T$$

[
$$H_2O_2$$
] = C_0 $\frac{V_0}{V_T}$ = $C_0\frac{1}{10}$ و منه V_T = 10+88+2 = 100ml = 10 V_0

: باقسمة على
$$V_T = [H_2O_2]V_T = [H_2O_2]_0 V_T - 2x$$

$$n (H_2O_2)_t = n_0 - 2x$$
 من جدول التقدم لدينا

$$[H_2O_2]_t = [H_2O_2]_0 - \frac{2}{V_T} x$$

3/ أ/ نقوم بتبريد العينات و هذا راجع لايقاف التفاعل

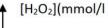
ب/ نستعمل كاشف: تغيير لون الكاشف يدل على وصول إلى نقطة التكتفؤ

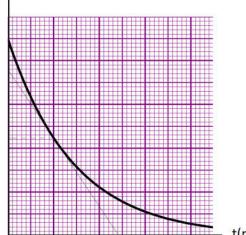
$$(x5)$$
 $H_2O_2 = O_2 + 2H^+ + 2e^ C_2 = C_3 + 2H^+ + 2e^-$

$$(x2)MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$

$$2MnO_4^- + 5H_2O_2 + 6H^+ = 2Mn^{2+} + 5O_2 + 8H_2O$$

$$mI - V_3$$
 حيث [H_2O_2] = 5.10^{-4} V_3 بعد الحساب نجد أن


$$C_3 = 0.02 \text{ mol/l}$$
; $V' = 10 \text{ml}$


$$[H_2O_2] = \frac{5C_3V_3}{2V'}$$

t (min)	0	10	20	30	45	60
V₃(ml)	18,0	9,0	5,2	3,1	1,6	1,0

$$C_0 = 10 [H_2O_2] = 9 \cdot 10^{-2} \text{ mol/l}$$
 $e^{-2} \text{ mol/l}$

t =0 اما

زمن نصف التفاعل هو الزمن الازم لبلوغ التفاعل نصف تقدم الاعظمى

من البيان نستنتج ان t_{1/2} = 10min

$$V_{Vol} = \frac{1}{V_T} \frac{dx}{dt}$$

$$X = \frac{n_0 - n_t}{5}$$

$$N(H_2O_2)_t = n(H_2O_2)_0 - 5x$$

$$V_{\text{Vol}} = -\frac{1}{5} \qquad \frac{d[H_2 O_2]_t}{dt}$$

بعد الحساب نجد ان v_{Vol} = 0.032 mol/l.min

	2Al	+	6H₃O⁺	П	2Al ³⁺	+	3H ₂	+	6H₂O
الحالة الابتدائية	n _{0(AI)}		n ₀ (H ₃ O ⁺)		0		0		بالزيادة
الحالة الانتقالية	n ₀ (Al) -2x		n₀(H₃O⁺)-6x		2x		3x		بالزيادة

من خلال البيان نلاحظ أن كتلة
$$AI$$
 لا تنتهي أي أن المتفاعل المحد هو الحمض n_0 (AI) n_0 (AI) n_0 (AI) n_0 (

$$n_0(\ H_3O^+) = 6x_f = 6 \ .\ 0,045 = 0,27\ mol$$

$$C = \frac{0,27}{0.1} = 2,7\ mol/l \qquad \qquad C = \frac{n_0}{V} \qquad \qquad n_0(\ H_3O^+) - 6x_f = 0 \qquad n_0(\ H_3O^+) = CV$$

 $n_f = n_0 - 2x_{max}$, $n_t = n_0 - 2x$: البرهان

بعد الاسقاط نجد $m_{t1/2} = \frac{m_0}{2} + \frac{m_f}{M}$: نجد أن $n_f = \frac{m_f}{M}$ بعد التعويض $n_0 = \frac{m_0}{M}$ بعد الحساب و بعد الاسقاط نجد $n_{t1/2} = n_0 - 2\frac{X_{max}}{2}$, $n_{t1/2} = n_0 - 2x_{t1/2}$

 $V_{VOI} = -\frac{1}{2VM} \frac{dm_t}{dt}$ البرات علاقة السرعة الحجمية : $x = \frac{m_0}{2M} - \frac{m_t}{2M}$ $V_{VOI} = \frac{dx}{2M}$ المنطقة السرعة الحجمية نجد أن x = 0.006 المنطقة السرعة الحجمية نجد من البيان x = 0.006 اي التقدم يساوي x = 0.006 المنطقة المنطقة

	n(Al)	n(H₃O⁺)	Al ³⁺	H ₂
I	0 1E 2 0 006_0 120	0 27 6 0 006-0 224	2 0 006 - 0 012	2 0 006-0 010

$$V\left(A|^{3+}\right) = \frac{dn(Al^{3+})}{dt} = \frac{d2x}{dt} = 2\frac{dx}{dt},$$
 $A|^{3+}$ نساوي : $V\left(A|^{3+}\right) = \frac{dn(Al^{3+})}{dt} = \frac{d2x}{dt} = 2\frac{dx}{dt},$ $A|^{3+}$ نسرعة تشكل $A|^{3+}$ $A|^{3+}$

[Al³⁺] =
$$\frac{n(Al)}{V}$$
 = 0,72 mol/l