الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطنى للامتحانات و المسابقات

إمتحان البكالوريا التجريبي

ثانوية: أحمد مدغري / تيارت

دورة: ماي 2018

الشعبة: تقني رياضي

وزارة التربية الوطنية

المدة : 04 سا و 30 د

إختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول:

يحتوى الموضوع الأول على 05 صفحات (من الصفحة 1 من 10 إلى الصفحة 5 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

لدينا التفاعلات النووية التالية:

(1)
$$4 {}_{1}^{1}H \rightarrow {}_{2}^{4}He + 2 {}_{Z}^{A}X + \gamma$$

(2)
$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

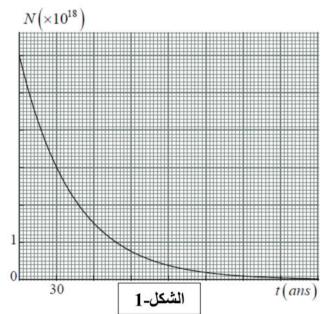
(3)
$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{58}Ce + ^{93}_{41}Nb + 3 ^{1}_{0}n + x ^{0}_{-1}e + 182,6 Mev$$

(4)
$$^{137}_{55}Cs \rightarrow ^{137}_{56}Ba + ^{0}_{-1}e + \bar{\nu}$$

x في التفاعل (1) و قيمة x في التفاعل و إندماج و تلقائية ، ثم حدّد طبيعة الجسم x في التفاعل (1) و قيمة xفي التفاعل (3).

2- أحسب الطاقة المحرّرة لكل نوكليون مشارك في التفاعلين (2) و (3) .

-3 بهدف مشروع ITER إلى رفع إنتاج الطاقة الناتجة عن إندماج الدوتريوم (D) (D) و التريتيوم (T) (D) استنتج الأهمية الطاقوية للإندماج ، و أذكر أهم مساوئ تفاعل الإنشطار .


4- أحسب الطاقة المحرّرة عن 1kg:

- من اليورانيوم 235 في التفاعل (3)
- من مزيج (D) و (T) متساوي الأنوية في التفاعل (D)
 - من أنوية H في التفاعل (1)
- 5- مثّل الحصيلة الطاقوية للتفاعل (2) ، و بيّن الأهمية الطاقوية
 - له على منحنى أستون.
- 6- ندرس تفكك السيزيوم 137 في التفاعل (4) . لدينا عيّنة منه
 - . t=0 عند اللحظة N_0 عدد أنويتها

مثَّنا في الشكل-1 تغيرات عدد الأنوية غير المتفككة بدلالة الزمن. أ/ حدّد زمن نصف عمر السيزيوم 137 .

A = f(t) برأكتب علاقة التناقص الإشعاعي لنشاط العيّنة

ثم بيّن أن خلال سنة لا يتعدى التغير النسبي في هذا النشاط %3.

3as.ency10education.com

. بطريقتين مختلفتين t=60~ans اللحظة في اللحظة أحسب نشاط العيّنة في اللحظة

د الحسب كتلة الباريوم 137 في اللحظة $t = 60 \ ans$

،
$$m(_2^4He)=4,00150\,u$$
 ، $m(_1^3H)=3,01550\,u$ ، $m(_1^2H)=2,01355\,u$: يُعطى

$$m\binom{0}{1}e = 4.48 \times 10^{-4} u$$
 , $m\binom{1}{0}n = 1.00866 u$, $m\binom{1}{1}H = 1.00730 u$

.
$$1 \ an = 3.15 \times 10^7 \ s$$
 , $N_A = 6.02 \times 10^{23} \ mol^{-1}$, $1u = 931.5 \ Mev/c^2 = 1.66 \times 10^{-27} \ kg$

التمرين الثاني: (04 نقاط)

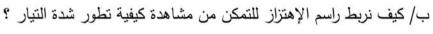
تضم الدارة الكهربائية المقابلة: (الشكل-2)

.
$$R_2$$
 و $R_1=1$ و $R_1=1$ و $R_1=1$

. t=0 عند اللحظة الوضع (1) عند اللحظة -I

$$u_{BC}$$
 و $\frac{du_{AB}}{d}$ و -1

9- كيف يمكنك قياس التوتر u_{BC} بواسطة مقياس فولط ذي صفر وسطى -2


، و عين جهة إنحراف إبرة مقياس الفولط .

 $u_{AB}=f(t)$ و تمثیل البیان ، u_{AB} التوتر التوتر u_{AB}

في الشكل -3.

. 4- في الشكل في الشكل مثلنا بواسطة برنامج إعلام آلي مناسب مثلنا بواسطة برنامج المحام

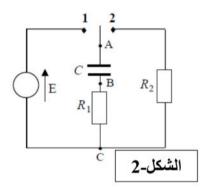
أ/ بيّن كيفية ربط راسم إهتزاز في الدارة من أجل مشاهدة البيان الممثل في الشكل-3.

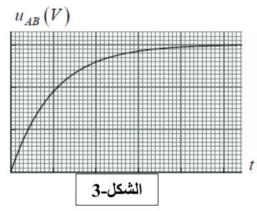
جـ/ إشرح كيف يتم شحن المكثفة على المستوى المجهري .

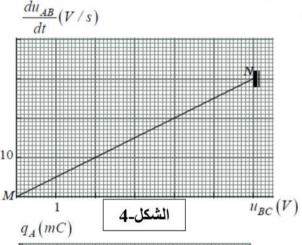
(N) و (M) و القاطعة (N) علق القاطعة (N)ه/ أحسب سعة المكثفة . (في الشكل - 4)

و / ضع سلما لمحوري بيان الشكل-3.

نضع البادلة على الوضع (1) ، و لما يتم الشحن نضع البادلة على t = 0 الوضع (2) عند اللحظة

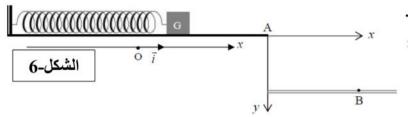

1- ما هي القيمة التي يشير لها مقياس الفولط؟


. $q_A = h(t)$ الأمكنة بدلالة الزمن (A) شحنة اللبوس ألم مثلنا في الشكل -2


أ/ حدّد طريقة ربط المكثفتين .

. C' أحسب قيمة السعة '-/

 R_2 . R_2 ia .



التمرين الثالث: (06 نقاط)

نابض مرن ثابت مرونته k ، مثبت أفقيا من إحدى نهايتيه و يحمل في نهايته الأخرى جسما نعتبره نقطة مادية كتلتها يتحرك الجسم فوق طاولة نضد هوائي . في حالة عدم تشغيل مضخّة الهواء يخضع الجسم إلى قوة إحتكاك . $m=100\,g$. 6– معاكسة لشعاع السرعة . الشكل f

تُعطى المعادلة التفاضلية التي تميز فاصلة المتحرك:

$$\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \beta x = 0$$

I- دراسة حركة الجسم فوق الطاولة:

بدون t=0 المضخّة ، نسحب الجسم أفقيا بمسافة قدرها t=0 من وضع توازنه t=0 و نتركه في اللحظة t=0 بدون -سرعة إبتدائية . بواسطة برنامج خاص سجلنا فواصل الجسم في لحظات زمنية مختلفة (الجدول) .

		ACM CONTRACT							_		
t (s)	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,10
x(cm)	3,0	2,7	2,3	1,7	1,3	1,0	0,7	0,5	0,3	0,2	0,1

(O) و هو متّجه نحو (G) و الوضع (G) و هو متّجه نحو (O)

? كيف نُسمى هذه الحركة x = f(t) بيانيا -2

t=0 نشغًل مضخّة الهواء لنزع الإحتكاك ، و نسحب الجسم من وضع توازنه (O) بمسافة X و نتركه في اللحظة -

1- بتطبيق القانون الثاني لنيوتن في معلم سطحي أرضى نعتبره غاليليا،أوجد المعادلة التفاضلية التي تميز فاصلة المتحرك .

ياً المعادلة التفاضلية هو $\omega_0 = \sqrt{rac{k}{m}}$ إذا إخترنا $x = X \cos(\omega_0 t + \varphi)$ ، ثم أوجد قيمة الصفحة $x = x \cos(\omega_0 t + \varphi)$

الابتدائية ٥.

. 7– مثّلنا مخطط السرعة v = g(t) الشكل -3

. (X) و سعة للحركة (ω_0) و الذاتى للحركة للحركة الخركة أ

ب/ أحسب ثابت مرونة النابض .

x = -2 cm ما هي لحظة أول مرور للمتحرك بالفاصلة

د/ مثّل فاصلة المتحرك بدلالة الزمن في المجال الزمني

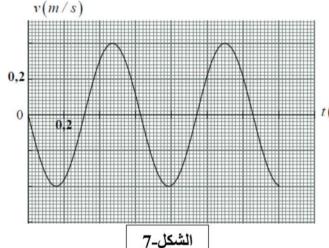
[0; 1,26s]

4- نضغط الآن النابض بـ 20 cm بدءا من وضع توازنه

و نتركه ، و لمّا يصل الجسم لوضع التوازن ينفلت من النابض .

(A) و (O) و (A) و أ(A)

 \cdot (A) في الجسم الجسم الجسم الجسم الجسم الجسب الجسب الجسب الجسب الجسب الجسب الجسب الجسم الجسب الجسم الحسم الجسم الجسم الجسم الجسم الحسم الح


II - دراسة حركة الجسم بعد مغادرته لسطح الطاولة :

. توجد النقطة (A) على حافة الطاولة على إمتداد محور النابض. يصبح الجسم بعد مغادرته للطاولة خاضعا فقط لقوة ثقله . (A) نعتبر t=0 لحظة وجود الجسم في

-1 أوجد المعادلتين التفاضليتين لمركبتي السرعة في المعلم (Ax , Ay)

2- أوجد معادلة مسار الجسم.

. t=0,4~s يصل الجسم إلى النقطة (B) في اللحظة -3

(B) أرأحسب طاقته الحركية لحظة وصوله إلى

(B) من الأوية الحادة المحصورة بين شعاع السرعة في (B) و المستوي الأفقى المار من

جـ/ بإعتبار الوضع المرجعي للطاقة الكامنة الثقالية هو المستوي الأفقي المار من (B)، تأكد أن مبدأ إنحفاظ الطاقة للجملة + أرض) محقّق ، ثم مثّل الحصيلة الطاقوية لهذه الجملة .

. $g = 10 \, m/s^2$: يُعطى

الجزء الثانى: (06 نقاط)

التمرين التجريبي:

كحول سائل (A) صيغته المجملة C_3H_8O ، كتلته الحجمية $\rho=0.8~kg/L$ قسمين متساويين : القسم الأول:

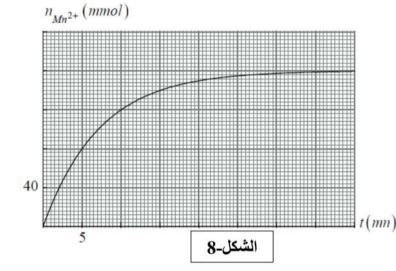
وضعناه في بيشر و أضفنا له حجما V=200~mL من محلول برمنغنات البوتاسيوم (K^+ , MnO_4^-) تركيزه المولي : C=1~mol/L

$$5C_3H_8O + 2MnO_4^- + 6H^+ = 5C_3H_6O + 2Mn^{2+} + 8H_2O$$

. 8-الشكل $n (Mn^{2+}) = f(t)$ البيان البيان البيان كذر سمحت بتمثيل البيان البوتاسيوم من حين لآخر سمحت المثلل المثلاث

1- أنشئ جدول تقدم التفاعل ، ثم أحسب التقدم الأعظمي .

. للكحول المستعمل V_1 للكحول المستعمل -2


. $t = 10 \ min$ أوجد التركيب المولي للمزيج في اللحظة

4- أحسب السرعة المتوسطة للتفاعل بين اللحظتين

 $t_1 = 5 \; min$ و $t_1 = 5 \; min$ و ، $t_1 = 5 \; min$ و $t_0 = 0$

و ماذا تستنج فيما يخص تطوّر التفاعل ؟ $t_2 = 10 \; min$

أذكر العامل الحركي الموافق.

القسم الثاني:

مزجنا القسم الثاني من الكحول مع كمية من حمض كربوكسيلي كتلتها $m=24\,g$ ، فشكّلنا بذلك مزيجا متساوي المولات . صيغة الحمض الكربوكسيلي من الشكل $C_nH_{2n+1}COOH$. قسّمنا المزيج في 10 أنابيب مرقمة من (1) إلى (10) ، و وضعناها في حمام مائي درجة حرارته ثابتة . عايرنا الحمض الموجود في الأنابيب بفارق زمني $\Delta t=1\,h$ ، فوجدنا أن كمية الحمض أصبحت ثابتة في الأنابيب (8) ، (9) ، (10) .

1- أوجد الصيغة المجملة للحمض الكربوكسيلي ، و أكتب صيغته المفصّلة ، و سمّه .

 $V_{bE}=16\ mL$ من محلول مائي لهيدروكسيد الصوديوم –2 معايرة الحمض الموجود في الأنبوب $V_{bE}=16\ mL$ من محلول مائي لهيدروكسيد الصوديوم –2 . $C_b=1\ mol/L$ تركيزه المولى (Na^+,OH^-)

أ/ أكتب معادلة تفاعل الحمض مع الكحول بإستعمال الصيغ المجملة . ما إسم هذا التفاعل ؟

ب/ هذا التفاعل بطيئ ، لهذا وضعنا المزيج المتفاعل في الحمام المائي . هل الحرارة تؤثر على :

- مدّة التفاعل ؟

- مردود التفاعل ؟

3as.ency10education.com

- -3 التقاعل الكحول مع الحمض ، ثم أحسب مردود هذا التفاعل -3
 - -4 أكتب الصيغة المفصّلة للكحول (A) ، و سمّه .
- (K^+,OH^-) و نقوم بتنقيته و نضعه في بالونة ، و نضيف له كمّية زائدة من (10) و نقوم بتنقيته و نضعه في بالونة ، و نضيف له كمّية زائدة من (K^+,OH^-) و قطع من الحجر الهشّ و نسخّن بالإرتداد لمدة كافية .
 - أ/ أكتب معادلة التفاعل ، و أذكر خصائص هذا التفاعل .
 - ب/ ما هو دور الحجر الهشّ المستعمل ؟
 - ج/ أحسب كتلة الملح الناتج .
 - د/ تُسمى مثل هذه التفاعلات تفاعلات التصبّن ، أذكر كيفية الحصول على صابون .
 - .~H=1~g/mol~~,~~C=12~g/mol~~,~~O=16~g/mol~~,~~K=39~g/mol~~:يُعظى

الموضوع الثاني:

يحتوي الموضوع الثاني على 05 صفحات (من الصفحة 6 من 10 إلى الصفحة 10 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

لدراسة حركة كرة تتس كتلتها g g g و نصف قطرها مركتها بواسطة كاميرا رقمية و حجمها V_S ، تركناها تسقط شاقوليا ، و سجّلنا حركتها بواسطة كاميرا رقمية ذات سرعة كبيرة . حلّلنا النتائج بواسطة برنامج معلوماتي ، حيث تمكنّا من تمثيل مخطط السرعة النظري (بإهمال تأثير الهواء) و مخطط السرعة الحقيقي في الشكل V_S ، و تمثيل جزء من البيان V_S في الشكل V_S . نسبنا في الشكل V_S ، و تمثيل جزء من البيان V_S و يعتبرناه غاليليا ، و رصدنا مواضع الكرة و سرعتها في المحور الشاقولي V_S الموجه للأسفل ، مبدؤه نقطة إنطلاق الكرة .

الحظة الكرة في اللحظة المؤثرة على الكرة في اللحظة -1 في الحالتين (السقوط الحقيقي و السقوط النظري) .

2- بتطبيق القانون الثاني لنيوتن ، جِدْ المعادلة التفاضلية لسرعة الكرة في كل حالة .

3- ضع المعادلة التفاضلية للسرعة في حالة السقوط الحقيقي على

$$eta$$
 عن عن ، $rac{dv}{dt}=\mathrm{g}(1-rac{1}{eta^2}v^2)$: الشكل

.
$$(f=k \ v^2):$$
 بدلالة: $r \cdot \rho_a \cdot \mathbf{g} \cdot \mathbf{m}:$ بدلالة

4- بإستعمال البيانين:

أ/ تأكد من شدّة التسارع الأرضي (g) .

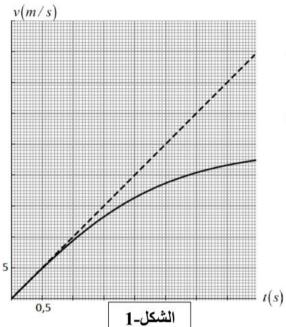
ب/ بيّن كيف يتغير تسارع الكرة في حالة السقوط الحقيقي .

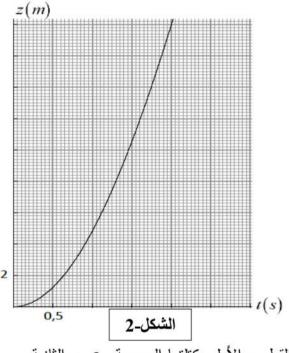
جـ/ ما هي المدة الزمنية التقريبية التي يمكن إعتبار الإحتكاك مهملا

خلالها أمام قوة الثقل في حالة السقوط الحقيقي.

د/ ما هي المسافة التي تكون قد قطعتها الكرة في الحالتين ؟

5- أحسب السرعة الحدية للكرة .


و الثانية ho_s أعيد التجربة بإستعمال كرتين كتلتاهما الحجميتان مختلفتان و لهما نفس القطر ، الأولى كتلتها الحجمية ho_s و الثانية ho_s ، و نعتبر السقوط حقيقيا و نهمل دافعة أرخميدس .


. $\frac{v_l}{v_{ll}} = \sqrt{\frac{\rho_S}{\rho_{lS}}}$: النسبة بين السرعتين الحديثين للكرتين تُكتب بالشكل السرعتين الحديثين الحديثين

r=2r' و بإهمال دافعة أرخميدس، r=2r' إذا كان للكرتين نفس الكتلة الحجمية ، و نصف قطران مختلفان

. $v_l = \sqrt{2} \,\, v'_l \,\,:$ بیّن أن

، $ho_a=1,3~kg/m^3$: و كتلتها الحجمية ho_S ، الكتلة الحجمية للهواء في شروط التجربة $V_S=rac{4}{3}\pi~r^3$ ، و كتلتها الحجمية $S=\pi r^2$ ، حيث $S=\pi r^2$ هي مساحة المقطع الأكبر للكرة ، $S=10~m/s^2$ ، حيث $S=\pi r^2$ هي مساحة المقطع الأكبر للكرة ، $S=10~m/s^2$ ، حيث $S=\pi r^2$

التمرين الثاني: (04 نقاط)

تحقيقه في العالم هو إندماج الديتريوم (D) و التريثيوم (T) ، و الذي يعمل الباحثون على تحقيقه في E(MeV) . ITER

2p + 3n

 $_{1}^{2}H + _{1}^{3}H$

الشكل-3

4666,97

 $^{4}He + X$

1- ما المقصود بالإندماج النووي ؟

2- أكتب معادلة إندماج النواتين H_1^2 و H_1^3 ، حيث تنتج نواة

الهيليوم 4 (He) 4.

 m_0 نحصل على . m_0 نحصل على . m_0 نحصل على الأنوية كتلته m_0 . نحصل على طاقة محرّرة قدرها $E=3.38{ imes}10^{11}\,J$

تُعطى الحصيلة الطاقوية لإندماج واحد في الشكل المقابل: (الشكل-3)

. بطريقتين (E_2) بطريقتين أ

 m_0 أحسب قيمة m_0

 m_0 عن الطاقة المحرّرة عن (C_3H_8) الذي بإحتراقه يُعطِي نفس الطاقة المحرّرة عن -4

- اليورانيوم ($^{235}_{92}U$) هي نواة قابلة للإنشطار ، حيث يمكن شطرها بواسطة نوترون بطيئ (حراري) إلى نواتين مختلفتين . الأنوية الناتجة تكون غير مستقرة حيث عادة تتفكك حسب النمط ($^{-}$) لإعطاء أنوية مستقرة .

يحدث تفاعل الإنشطار في مفاعل نووي ، و إحدى التحولات النووية الحادثة هي :

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{A}_{40}Zr + ^{142}_{58}Ce + 3 ^{1}_{0}n + y ^{0}_{-1}e$$

 $\cdot \beta^-$ عرّف التفكك -1

2- أحسب الطاقة المحرّرة في هذا الإنشطار . على أي شكل تظهر هذه الطاقة ؟

 γ الماقة يصدُر على شكل إشعاعات (γ) ، ما مصدر هذه الإشعاعات γ

4- قارن الطاقة المحرّرة في هذا الإنشطار مع الطاقة المحرّرة في الإندماج السابق . ما تعليقك ؟

، $m(^{235}_{92}U)=234,99346~u$ ، $m(^{A}_{40}Zr)=90,88370~u$ ، $m(^{142}_{58}Ce)=141,87742~u$ ؛ يعطى $\frac{E_l}{A}(^2_1H)=1,11~Mev/nucl$ ، $m(^{0}_{-1}e)=5,48\times10^{-4}~u$ ، $m(^{1}_{0}n)=1,00866~u$

 $1 \text{ Mev} = 1.6 \times 10^{-13} \text{ J}$, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$, $\frac{E_l}{A} \binom{3}{1} H = 2.82 \text{ Mev/nucl}$

، $M\left(C_{3}H_{8}
ight)=44\ g/mol$ ، $2200\ kJ.mol^{-1}$: هي القدرة الحرارية لغاز البروبان هي

. $1u = 931,5 \ Mev/c^2$, $m(^1_1H) = 1,00730 \ u$

التمرين الثالث: (06 نقاط)

. $25^{\circ}C$ المحاليل مأخوذة في الدرجة

المقطر و نحصل على محلول M=4,67 صيغته من الشكل $C_nH_{2n+1}COOH$. نحلًا كمية منه كتلتها m=4,67 في الماء V=200 . M=4,67 و تركيزه المولى M=4,67 المقطر و نحصل على محلول M=4,67 حجمه M=4,67 و له M=4,67 و تركيزه المولى M=4,67 المقطر و نحصل على محلول M=4,67 حجمه M=4,67 و له M=4,67 و تركيزه المولى M=4,67 المقطر و نحصل على محلول M=4,67 حجمه M=4,67 و له M=4,67 و تركيزه المولى M=4,67 المقطر و نحصل على محلول M=4,67 حجمه M=4,67 و له M=4,67 و تركيزه المولى M=4,67 المقطر و نحصل على محلول M=4,67 حجمه M=4,67 و تركيزه المولى M=4,67 و تركيزه المولى M=4,67 و تركيزه المولى M=4,67 و تركيزه المولى M=4,67

. pH=2,9 و له $C_2=rac{C_1}{10}$ و المولى نركيزه المولى المحلول (S_2) و المحلول المحلول بنطلاقا من المحلول المحلول المحلول بنائم محلولا المحلول المحلول

. (S_2) هو حمض ضعيف في الماء ، ثم أذكر البروتوكول التجريبي لتحضير المحلول (A)

. (S_1) عادلة تفاعل الحمض مع الماء في المحلول (S_1) ، ثم أحسب التركيز المولي للمحلول -2

. و أوجد الصيغة المجملة للحمض (A) ، و أكتب صيغته نصف المفصّلة و أذكر إسمه -3

3as.ency10education.com

II نمزج في حوجلة مزودة بجهاز التسخين المرتّد $0,2\ mol$ من الحمض (A) و $0,3\ mol$ من كحول (B) صيغته المجملة C_3H_8O ، و نضيف للمزيج بعض القطرات من حمض الكبريت المركّز . نقوم بالتسخين ، و بعد مدة كافية لوصول التفاعل لحالة التوازن ، برّدنا المزيج و أضفنا له كمية من محلول كلور الصوديوم ، و بعد عملية السّكب و تنقية الأستر من الحمض بواسطة هيدروجين كاربونات الصوديوم (Na^+, HCO_3^-) و جدنا كتلة الأستر (B) عمل من المحمض بواسطة هيدروجين كاربونات الصوديوم (B) المحمض بواسطة هيدروجين كاربونات الصوديوم (B)

- 1 ما هو دور التسخين المرتّد ، و ما الفائدة من إضافة قطرات من حمض الكبريت المركّز 2
 - 2 ما الفائدة من إضافة محلول كلور الصوديوم 2
 - 3- أكتب معادلة تفاعل الأسترة ، و أذكر خصائص هذا التفاعل .
 - 4- أحسب ثابت توازن هذا التفاعل ، و إستنتج صنف الكحول ، و أكتب صيغته المفصلة .
- 5- أحسب مردود التفاعل ، و أذكر الطريقة التي نرفع بها المردود و نحصل على أستر نقى .
- من الحمض m=29,6 g من الحمض الشروط، و لما يصل للتوازن نُضيف للمزيج كمية m=29,6 g من الحمض الحمض ، أحسب المردود الجديد .
- و نشكّل ، (Na^+,OH^-) كميّة (n_0) من الأستر (E) مع (n_0) من محلول لهيدروكسيد الصوديوم (Na^+,OH^-) ، و نشكّل -III حجما قدره V=100~mL .
 - 1- أكتب معادلة التفاعل بين الأستر و هيدروكسيد الصوديوم ، ما هو إسم هذا التفاعل ؟ أذكر خصائصه .

2- أنشئ جدول التقدم لهذا التفاعل . 3- نُتابع تطور التفاعل بواسطة قياس الناقلية النوعية للمزيج ، و نمثل

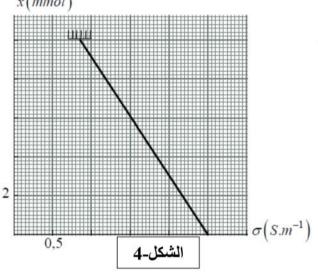
. 4-الشكل . $x=f(\sigma)$ النوعية النوعية بدلالة الناقلية النوعية

- أوجد من البيان:

أ له الناقلية النوعية (σ_0) للمزيج المتفاعل قبل بدء التفاعل أ

ب/ قيمة التقدم الأعظمي .

، لياقلية النوعية (σ_f) ، ويمة الناقلية النوعية -


 $\lambda_{C_nH_{2n+1}COO}$ - ثم أحسب

النوعية للمزيج t=8~min كانت الناقلية النوعية للمزيج -4

 $\sigma = 1,68 \; S.m^{-1}$. حدّد قيمة زمن نصف التفاعل . $\sigma = 1,68 \; S.m^{-1}$

 $.~25^{\circ}C$ في الدرجة $K_a(C_nH_{2n+1}COOH/C_nH_{2n+1}COO^{-})=1,26 imes10^{-5}$: يُعطى

 $. \ M\left(H\right) = 1 \ g/mol \ \ \cdot \ M\left(O\right) = 16 \ g/mol \ \ \cdot \ M\left(C\right) = 12 \ g/mol \ \ \cdot \ \lambda_{Na^{+}} = 5 \ mS. \ m^{2}. \ mol^{-1}$

الجزء الثاني: (06 نقاط)

التمرين التجريبي:

I- تضمّ دارة كهربائية العناصر التالية: (الشكل-5)

E مولدا مثاليا للتوترات قوته المحركة الكهربائية -

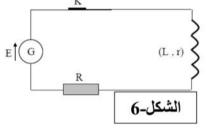
 $r=5~\Omega$ وشیعهٔ تحریضیهٔ (B_1) ذاتیتها D و مقاومتها -

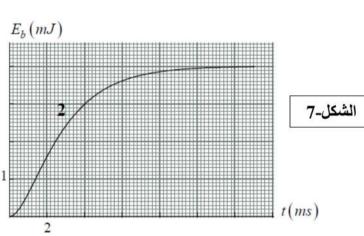
R ناقلا أوميا مقاومته -

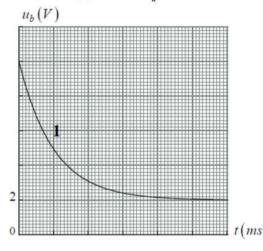
 L_2 و L_1 و مصباحين متماثلين –

t=0 نغلق القاطعة K في اللحظة

. علَّل -1 ما هو المصباح الذي يشتعل آنيا ? علَّل -1


2- عندما يبلغ التيار قيمته العظمى ، هل تكون شدّة التوهج في المصباحين متماثلة ؟ علّل .


3- نقطع التيار و ننزع المصباحين ، و نحصل على الدارة الممثلة في الشكل-6.


t=0 نغلق القاطعة في اللحظة -

البيان (1) يمثل تطور التوتر بين طرفي الوشيعة $u_b(t)$ ، و البيان (2) يمثل – البيان

. 7- الشكل . $E_{\rm b}(t)$. الشكل المخزنة في الوشيعة

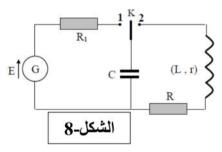
أ/ أحسب شدّة التيار في النظام الدائم .

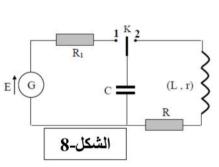
ب/ أحسب ذاتية الوشيعة .

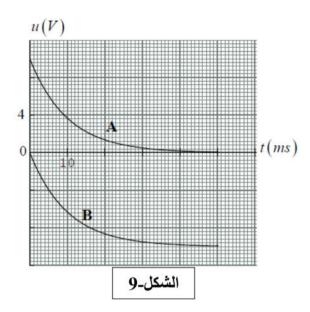
(R) أحسب مقاومة الناقل الأومى

د/ أحسب قيمة ثابت الزمن لهذه الدارة ، ثم ضع سلما للزمن على البيان (1) .

الما و مقاومته R_1 و مكثفة القطع التيار و نغير تركيب الدارة بإضافة ناقل أومي مقاومته R_1


سعتها μF و بادلة K مقاومتها مهملة . الشكل $C=20~\mu$


ربطنا راسم إهتزاز مهبطي ذي مدخلين في الدارة ، و وضعنا البادلة على الوضع (1) في اللحظة t=0 ، وحصلنا على البيانين (A) و (B) الشكل t=0


1- بين على الدارة كيفية ربط راسم الإهتزاز.

-2 أحسب قيمة −2

 $t = 60 \ ms$ أحسب الطاقة المخزنة في المكثفة في اللحظة -3

المكثفة و مثلًنا البيان $u_{C}(V)$. و نتابع تطور التوتر بين طرفي اللحظة t=0 في الوضع (2) ، و نتابع تطور التوتر بين طرفي $u_{C}(V)$. الشكل $u_{C}(V)$

t(ms)

1- ما هو نمط الإهتزازات الحاصلة ؟

2- حدد قيمة شبه الدور.

-3 الطاقة الضائعة بفعل جول بعد -3 من لحظة

غلق القاطعة .

4- نعيد هذه التجربة الأخيرة بتغيير الوشيعة السابقة بوشيعة

أخرى (B_2) مقاومتها مهملة و بدون إستعمال الناقل

الشكل-10

الأومى (R) . نغلق القاطعة عند اللحظة t=0 و المكثفة مشحونة تماما .

أ/ بتطبيق قانون جمع التوترات ، أوجد المعادلة التفاضلية بدلالة التوتر بين طرفي المكثفة .

ب/ ما هو نمط الإهتزازات الحاصلة ؟

. $u_{\rm C}=E\, cos(\omega_0\,t+arphi)$: بيُعطى حلّ المعادلة التفاضلية السابقة بالشكل

- أوجد قيمة الدور الذاتي للإهتزازات الحاصلة ، و قارنه مع شبه الدور للإهتزازات السابقة .

. $rac{dE}{dt}=0$: ثم بيّن أن ن $u_{
m C}$ ، $u_{
m C}$

- كيف تفسر هذه النتيجة ؟

إنتهى الموضوع الثاني .

تمارين إضافية مهمة للمراجعة:

التمرين الأول: (04 نقاط)

طريق أفقي مستقيم ABC ، حيث الإحتكاك على الجزء AB مهمل ، أما على الجزء BC فهو مكافئ لقوّة واحدة f ثابتة و

. m=500~g معاكسة للسرعة . لدينا جسم (S) كتاته

نُجري في المخبر التجربة التالية عدّة مراّت :

B C

B C

نسحب الجسم على الطريق بواسطة قوة ثابتة في الشدة \overline{f} و هو ساكن في النقطة (\overline{A}) ، حيث يصنع حامل القوة مع المستوي الأفقي \overline{A} زاوية α يُمكن تغييرها في كل تجربة . لمّا يصل الجسم إلى \overline{B} تُلغى القوة \overline{F} تلقائيا .

. AB على الجزء . AB = 1 m المسافة . AB = 1 مثلًا بيانيا تسارع الجسم (a

 $1/s^2$) ما هو شرط أن نعتبر نقطة من أرضية المخبر مبدأ غاليلي -1

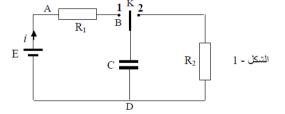
2- بتطبيق القانون الثاني لنيوتن في المعلم السابق ، بيّن أن حركة

الجسم بين A و B متغيّرة بانتظام .

F إعتمادا على البيان ، أوجد شدة القوة -3

4- بتطبيق القانون الثاني لنيوتن ، عبر عن تسارع الجسم (a')

 \cdot m و f بدلالة f و B بين

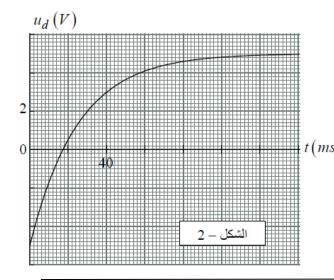

: $\alpha = 60^\circ$ بإختيار التجربة التي تكون فيها -5

 \coslpha . B و الزمن المستغرق بين A و B أحسب سرعة الجسم في النقطة

. BB' = 0.75~m غلم المسافة وقد الإحتكاك f على BC علما أن الجسم يتوقف بعد قطعه لمسافة

(توجد 'B بين B و C).

 $\stackrel{\blacktriangleright}{-}$ في إحدى التجارب حافظنا على القوة F بعد النقطة B . كم يجب أن تكون قيمة الزاوية α لكي تصبح حركة الجسم بعد النقطة B منتظمة γ


التمرين الثاني: (04 نقاط)

تضم دارة كهربائية العناصر التالية: (الشكل-1)

- . E مولدا مثاليا للتوترات قوته المحركة الكهربائية
 - \cdot $\,$ مكثفة سعتها $\,$
- . R_2 و $R_1=100~\Omega$ و $R_1=100~\Omega$
 - بادلة *K*

I- نضع البادلة على الوضع (1) عند اللحظة t=0 ، و بواسطة تجهيز خاص مزوّد ببرنامج إعلام آلي غير ممثل في الشكل ، مثّلنا u_{AB} و u_{BD} نطور الفرق بين التوترين u_{BD} و u_{BD}

- . (2–الشكل $u_d = (u_{BD} u_{AB}) = f(t)$
 - 1- مثّل أشعة التوترات على عناصر الدارة.
- 2- إشرح كيفية شحن المكثفة على المستوى المجهري.

. $u_{AB} = Ee^{-\frac{t}{R_1C}}$: هو المعادلة التفاضلية هو ، u_{AB} ، ثم بيّن أن حل هذه المعادلة التفاضلية هو -3

 u_{BD} إستنتج العبارة الزمنية للتوتر -4

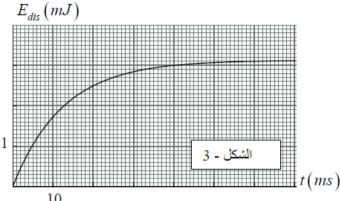
. بيّن أنه عند اللحظة $t=R_1C$ يكون $u_d=0.26E$ ، ثم حدّد قيمة ثابت الزمن (au) ، ثم أحسب سعة المكثقة .

6- أوجد من البيان اللحظة التي تكون فيها المكثفة قد أخذت نصف شحنتها الأعظمية ، ثم بيّن أن هذه اللحظة تُعطي

 $t_{1/2} = R_1 C \ln 2$: بالعلاقة

$$t=0$$
 وضعنا البادلة على الوضع (2) عند اللحظة -7

عندما تكون المكثفة مشحونة تماما ، و مثّلنا في الشكل-3 الطاقة


. المتحوّلة بفعل جول (E_{dis}) بدلالة الزمن

أ/ إشرح كيفية تفريغ المكثفة على المستوى المجهري .

.
$$i=rac{E}{R_2}e^{-rac{t}{R_2C}}$$
 ب/ تتطور شدة التيار حسب التابع الزمني با

- عبر عن الطاقة المتحوّلة بدلالة الزمن .

. R_2 أوجد من البيان قيمة ثابت الزمن ، ثم أحسب قيمة –

التمرين الثالث: (04 نقاط)

ا - لعنصر اليود عدّة نظائر ، منها $rac{123}{53}$ و $rac{131}{53}$ مشعّان ، أما $rac{127}{53}$ هو نوكليد مستقر . يشعّ $rac{123}{53}$ حسب النمط $rac{1}{6}$ و

. $t_{1/2}=8$ هو j هو 131 مر اليود eta^- حسب النمط eta^- زمن نصف عمر اليود

1- ما هي ظاهرة النشاط الإشعاعي ؟

. $^{131}_{53}$ و $^{123}_{53}$ و من الكتب معادلتي تفكّك كل من 123

3- ما المقصود بالنظائر ؟

4- تمثّل المنطقة الملونة على مخطط سوقري جزءا من وادي الإستقرار .

أ/ ما المقصود بـ A و Z في الكتابة الرمزية للنواة A ?

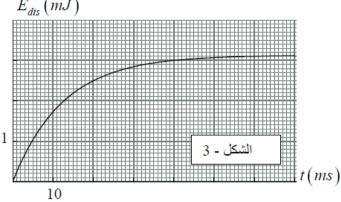
ب/ حسب موضعي النواتين $^{123}_{53}$ و $^{131}_{53}$ في هذا المخطط ، حدّد مصدري

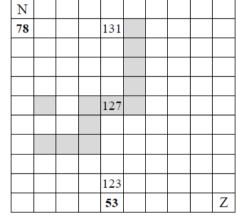
. $^{131}_{54}$ Xe ، $^{123}_{52}$ Te : يُعطى eta^- و eta^+

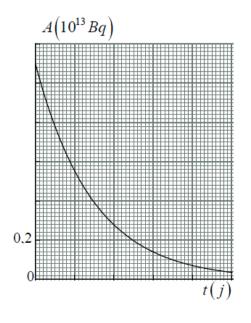
II- في حادثة تشرنوبيل السوفياتية (26 أفريل 1986) تسرّب من المفاعل النووي $^{137}_{55}Cs$ و السيزيوم $^{131}_{53}I$

 $t'_{1/2} = 30 \; ans$ هو عمر السيزيوم 137 دمن نصف عمر السيزيوم

-1 علما أن نفس الكتلة من النظيرين قد تسربت -1

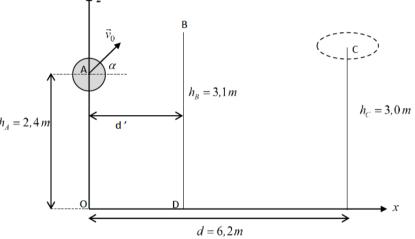

بيّن أن : $N(^{131}I) \approx N(^{137}Cs)$. هل نعتبر أن النوكليدين ما زالا ينشطان لحد اليوم (ماي 2018) ؟


t=0 عند اللحظة m_0 عند اليود 131 كتاتها m_0 عند اللحظة -2

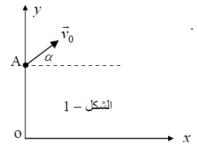

A = f(t)

أ/ عرّف ثابت الزمن لعينة مشّعة ، ثم أحسب ثابت الزمن لليود 131 .

ب/ عين السلم على محور الزمن في البيان .



- m_0 أحسب قيمة الكتلة m_0
- $m'_0 = \frac{m_0}{2} : t = 0$ عند اللحظة عند اللحظة عينة من اليود 131 كتلتها عند اللحظة السابق بيان تطور نشاط عينة من اليود
- 3- تلعب أنوية اليود 131 و اليود 123 دور رسّامات لتحديد الأماكن المصابة في الجسم . تُعطى لمريض حقنة من اليود
 - . المعند 48 عند اللحظة t=0 ، و يتم مراقبة الصور بعد A_0 ساعة A_0
 - ما مقدار التغير النسبي في نشاط اليود 131 في الجسم آنذاك ؟
- -4 نجد أن . $A_0=6,4~MBq: t=0$ عند اللحظة $A_0=6,4~MBq: t=0$ عند اللود 123 نجد أن اليود 33% من محتوى الحقنة قد تفكك ، أحسب ثابت الزمن لليود 123 .


التمرين الرابع: (04 نقاط)

ندرس حركة مركز عطالة كرة السلّة ، حيث نهمل كل تأثيرات الهواء . يقذف لاعب الكرة من النقطة (A) و هو ثابت بسرعة v_0 تصنع مع المستوي الأفقي المار من النقطة (A) زاوية $\alpha=40^\circ$. كتلة الكرة m و قطرها d=25 . لم يتم مراعاة السلم في تمثيل الشكل .

- 1 في أي مرجع ندرس حركة الكرة ، و ما هو شرط أن يكون هذا المرجع غاليليا 2
- . محور . الدرس حركة الكرة منسوبة للمعلم (Ox,Oz) ، و أكتب المعادلتين التفاضليتين للسرعة على كل محور -2
 - . z = f(x) معادلة مسار الكرة -3
 - . بيّن أن اللاعب يسجّل الهدف ، $v_0 = 8{,}43~m/s$
- 5- يوجد مدافع BD على بعد d' عن اللاعب المهاجم BD هي المسافة الفاصلة بين الأرض و طرف أصابع المدافع عندما يرفع يده شاقوليا) . كم يجب أن تكون أصغر مسافة d' بين المهاجم و المدافع حتى يمسّ المدافع الكرة بطرف أصابعه دون تغيير حركتها ?
 - 6- بتطبيق مبدأ إنحفاظ الطاقة ، أحسب سرعة الكرة عند مرورها بالسلّة .
 - (C) و (A) و الكرة بين (A) و (A) و (A)
 - هي الزاوية بين $\overrightarrow{v_C}$ و المستوي الأفقي المار من مركز السلّة ؟ -8
 - $g = 10 \, m/s^2$ يُعطى:

التمرين الخامس: (04 نقاط)

يقذف لاعب الكرة الطائرة الكرة من النقطة (A) بإعطائها سرعة v_0 في اللحظة t=0 ، نعتبر الكرة نقطية ، يصنع شعاع السرعة مع المستوي الأفقي زاوية α (الشكل-1) . نعتبر الكرة نقطية ،

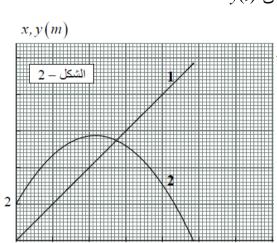
و نهمل تأثيرات الهواء عليها .

y(t) و x(t) و x(t) و الشكل x(t) و النقط التي تمر بها الكرة x(t) و x(t)

. y(t) و البيان (2) و البيان x(t) ، و البيان (1) يوافق x(t) ، و البيان (2) يوافق -1

 $\cdot \alpha$ و v_0 و غيمتى -2

t=0.6~s ما هي مميزات سرعة الكرة في اللحظة t=0.6~s


4- أوجد معادلة مسار الكرة .

. مثل $v_y(t)$ و $v_x(t)$ في نفس المعلم -5

6- أحسب كتلة الكرة علما أن أصغر طاقة حركية تكتسبها الكرة

. $E_{Cmin} = 3,37 \; J$ هي

 $g = 10 \, m/s^2$: يُعطى

التمرين السادس: (04 نقاط)

وسادة هوائية مائلة بزاوية $\alpha=30^\circ$ عن المستوي الأفقي . ينعدم الإحتكاك إذا شغّلنا المضخة الهوائية ، و نعتبر قوة الإحتكاك على الوسادة ثابتة و معاكسة لشعاع سرعة المتحرك على الوسادة ، شدتها f إذا لم نشغّل المضخة الهوائية . ندفع جسما (S) من النقطة O عند اللحظة t=0 بسرعة شعاعها مواز للمحور Ox (أي لخط الميل الأعظم للوسادة S

الهوائية) . نعتبر الجسم نقطة مادية كتلتها m=100 (الشكل-1) . مثّننا مخطط السرعة أثناء صعود الجسم و نزوله على المستوي المائل ،

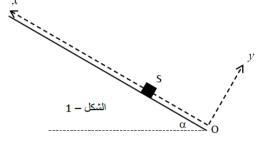
و ذلك في تجربتين ، حيث في الأولى شغّلنا المضخة و في الثانية لم نشغّل المضخة . (الشكل-2 و الشكل-3) .

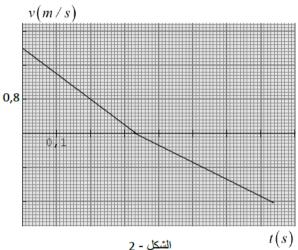
1 - 1

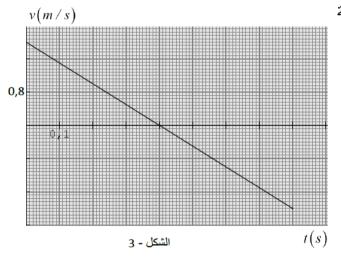
2- بتطبيق القانون الثاني لنيوتن في مرجع سطحي أرضي نعتبره غاليليا : -2 جِدْ عبارة تسارع الجسم (S) خلال الصعود و خلال النزول في كل تجربة بدلالة α ، f ، g ، m .

3- أُنْسب كل تجربة لمخطط السرعة الموافق ، مع التعليل المختصر .

4- أحسب المسافة التي قطعها الجسم خلال الصعود في كل تجربة.


5- أحسب شدّة قوة الإحتكاك f إعتمادا على نتائج تطبيق القانون-5


الثاني لنيوتن ، ثم إعتمادا على مبدأ إنحفاظ الطاقة خلال صعود الجسم .


6- مثّل مخطط تسارع الجسم في التجربة التي لم نشغّل فيها المضخة

 $g = 10 \, m/s^2$ يُعطي

الهوائية.

