الثانويات: عيسى زريمش(حمام دباغ) ـ هواري بومدين(عين احساينية) يـــوم: 2017 / 12/04

حدادي عبد الله (هيليوبوليس) - شعلال مسعود (قالمة) المستوى: 3عتج المدة: ساعتان

اختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول (06 نقط):

لكل سؤال ثلاث إجابات ، إجابة واحدة منها صحيحة ، المطلوب : تحديد الإجابة الصحيحة مع التبرير

الإجابة ج	الإجابة ب	الإجابة أ	السؤال	الرقم
x=2	x = -1	x = 1	في مستو منسوب إلى معلم متعامد المنحنى البياني للدالة f المعرفة على $\{1\} - \{1\}$ بـ: $f(x) = x^2 - 2x - \ln(x - 1)^2$ يقبل محور تناظر معادلته :	01
$h'(x) = \frac{1}{3x^2 + 1}$	$h'(x) = \frac{1}{3x^2 + 3}$	$h'(x) = \frac{1}{x^2 + 3}$	إذا كانت f دالة قابلة للاشتقاق على \Box :	02
$y = -\frac{1}{2}$	$y = \frac{1}{3}$	$y = -\frac{1}{3}$	f حلا في \Box للمعادلة التفاضلية : (C) و (C) التمثيل البياني للدالة (C) في (C) المستوي المنسوب إلى معلم متعامد ومتجانس ، المنحنى (C) يقبل عند (C) مستقيما مقاربا معادلته :	03

التمرين الثاني (07 نقاط):

 $f(x) = x + 1 + e^{\frac{1}{x+1}}$: بـ $I =]-\infty; -1[\cup]-1;0]$ على والم دولة على $f(x) = x + 1 + e^{\frac{1}{x+1}}$ با دالة معرّفة على البياني في مستوي منسوب إلى معلم متعامد ومتجانس كما هو مبين في الوثيقة المرفقة.

 I^{*} بقراءة بيانية: شكل جدول تغيرات الدالة f على المجال I

 $g(x) = -x + 1 + e^{\frac{1}{x+1}}$: كما يلي إلى المجال $g(x) = -x + 1 + e^{\frac{1}{x+1}}$ كما يلي $g(x) = -x + 1 + e^{\frac{1}{x+1}}$

- تمثيلها البياني في مستوي منسوب إلى معلم متعامد ومتجانس. $\left(C_{_{g}}
 ight)$
 - . $+\infty$ عند g عند g
- . $+\infty$ بجوار $C_{\rm g}$ بجوار مائل المنحنى و y=-x+2 بجوار براين أن المستقيم ذي المعادلة
 - $_{-}$ و أدرس تغيرات الدالة

$$k(x) = -|x| + 1 + e^{\frac{1}{x+1}}$$
: كما يلي $k(x) = -\{-1\}$ دالة معرفة على $k(x) = -\{-1\}$

متعامد ومتجانس. يتمثيلها البياني في مستوي منسوب إلى معلم متعامد ومتجانس. (C_k)

. $x_0=0$ المماسين المماسين $\left(\Delta_2\right)$ و $\left(\Delta_1\right)$ المنحنى النقطة التي فاصلتها *2

((الإنشاء على الوثيقة المرفقة تعاد مع ورقة الاجابة)).
$$(C_k)$$
 و (Δ_2) ، (Δ_1) انشئ $*3$

التمرين الثالث (07 نقاط):

- . $g\left(x\right)=x^{2}+2\ln x$ بادالة العددية المعرفة على $g\left(x\right)=x^{2}+2\ln x$. و الدالة العددية المعرفة على $g\left(x\right)$
 - 1 / ادرس تغيرات الدالة g.
- $0.75 \prec \beta \prec 0.76$: مين أن المعادلة g(x) = 0 تقبل حلا وحيدا β حيث 2
 - ** استنتج حسب قیم x إشارة g(x)
- . $f(x) = 1 x + \frac{2}{x}(1 + \ln x)$:ب $[-1, +\infty]$ بعتبر الدالة العددية f المعرفة على f المعرفة على (II

. $\left(0;\vec{i};\vec{j}\right)$ المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد و المتجانس المنطق المستوي المستوي المنسوب إلى المنطق المتعامد و المتجانس

$$\lim_{x \to +\infty} f(x) = \lim_{x \to 0} f(x) : \frac{1}{x \to 0}$$

. + ∞ عند (C_f) مقارب مائل للمنحنى y=-x+1: في المعادلة (Δ) عند ب*

. (Δ) ادر س وضعية المنحنى (C_f) بالنسبة إلى المستقيم

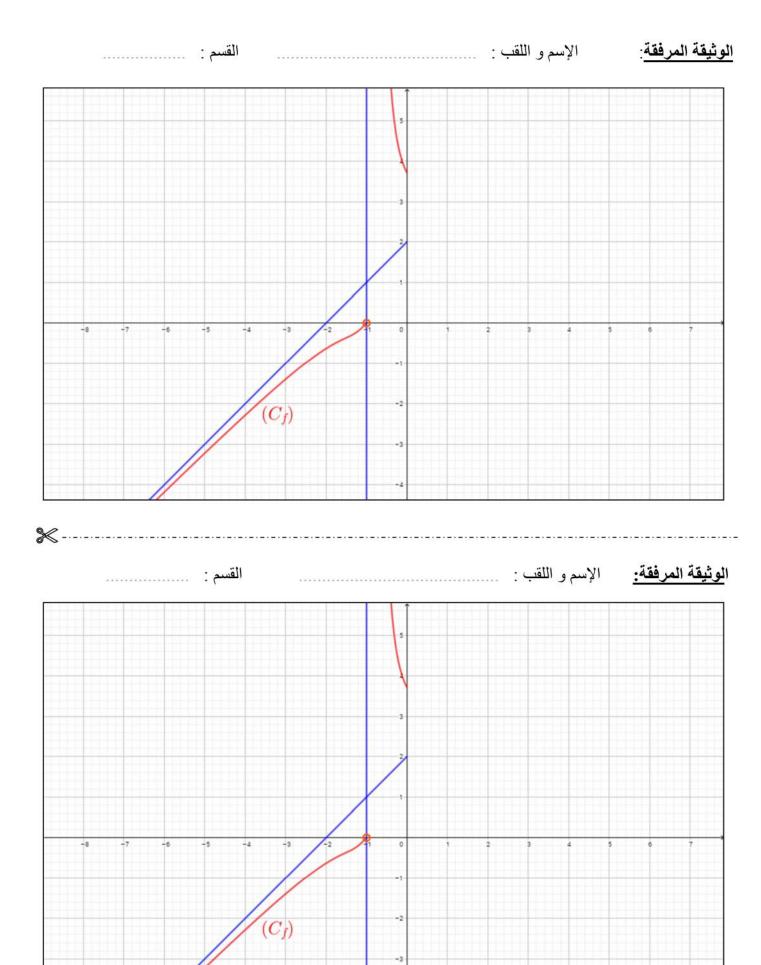
.
$$f'(x) = \frac{-g(x)}{x^2}$$
 : $]0; +\infty[$ من $]0; +\infty[$ کل کل $]0; +\infty[$ (2

ب*/ استنتج اتجاه تغير الدالة f وشكل جدول تغير اتها .

. عادلته معادلته (Δ) يوازي (Δ)، يطلب كتابة معادلته (Δ) يوازي (Δ)، يطلب كتابة معادلته (3

 (C_f) والمنحنى ((T_f)) و ((T_f)) و المنحنى ((T_f)).

 $(E)...-mx+2+2\ln x=0$ عدد حقيقي ، عين قيم العدد الحقيقي m حتى تقبل المعادلة: m عدد حقيقي ، عين قيم العدد الحقيقي . حلين مختلفين موجبين .



2018 / 2017

الثالثة علوم تجريبية

الثانويات: زريمش عيسي (حام دباغ)- هواري بومدين (عين احساينية)-

غجاتي علاوة (الركنية)- شعلال مسعود (قالمة)- حدادي عبد الله (هيليوبوليس)

تصحيح اختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول: سؤال1 سؤال2 سؤال3

 $(1+x)\in \square-\{1\}$ من أجل كل عدد حقيقي x حيث عدد الج f(1+x) = f(1-x): نبین أن $(1-x) \in \square - \{1\}$

$$f(1-x) = (1-x)^2 + 2(1-x) - \ln(1-x-1)^2$$

$$=1-2x+x^2-2+2x-\ln x^2=x^2-1-\ln x^2....(1)$$
$$f(1+x)=(1+x)^2-2(1+x)-\ln(1+x-1)^2=x^2-1-\ln x^2...(2)$$

من (1) و (2) نستنتج أن المستقيم ذو المعادلة x=1 هو (C_{c}) محور تناظر للمنحنى

: x حقیقی عدد حقیقی (2)

$$h'(x) = [f(3x)]' = 3f'(3x) = 3\left(\frac{1}{(3x)^2 + 3}\right) = \frac{1}{3x^2 + 1}$$

ن المعادلة y' + 6y - 2 = 0 محلول المعادلة y' + 6y - 2 = 0التفاضلية y'=-6y+2في هي الدوال y'=-6y+2

مع
$$c$$
 ثابت حقیقی. $y = ce^{-6x} + \frac{1}{3}$

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} ce^{-6x} + \frac{1}{3} = \frac{1}{3}$ لدينا

 $I =]-\infty; -1[\cup]-1; 0] \cdot f(x) = x+1+e^{\frac{1}{x+1}} (I$ f تشكيل جدول تغيرات الدالة f

-00	-1	0
+		_
_	→ ⁰ +∞	e+1
		-∞ -1 + 0 +∞

$$D_g = [0; +\infty[\cdot g(x) = -x + 1 + e^{\frac{1}{x+1}}]/2$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left(-x + 1 + e^{\frac{1}{x+1}} \right) = -\infty \left(\int_{-\infty}^{\infty} e^{-x} dx \right)$$

y = -x + 2 نبين أن المستقيم ذي المعادلة y = -x + 2

الدينا: $+\infty$ بجوار $+\infty$ الدينا: $+\infty$ مستقيم مقارب مائل للمنحن

$$\lim_{x \to +\infty} \left(g(x) - (-x + 2) \right) = \lim_{x \to +\infty} \left(-1 + e^{\frac{1}{x+1}} \right) = 0$$

ج) دراسة تغيرات الدالة g:

دراسة اتجاه تغير الدالة g على $g:[0;+\infty]$ تقبل الاشتقاق

$$g'(x) = -\left(1 + \frac{1}{(x+1)^2}e^{\frac{1}{x+1}}\right)$$
: g' ودالتها المشتقة $g'(x) = \left[0; +\infty\right]$

g من أجل كل x من أجل كل g'(x) < 0: $[0; +\infty]$ من أجل كل

 $[0:+\infty]$ متناقصة تماما على المجال

جدول التغيرات:

I	0	+∞
g'(x)		_
g(x)	1+e	
58 8		_~

. $D_k = \Box - \{-1\}$, $k(x) = -|x| + 1 + e^{\frac{1}{x+1}}$ (II

$$\lim_{\substack{h \to 0}} \frac{k(h) - k(0)}{h} = \lim_{\substack{h \to 0}} \frac{k(h) - k(0)}{h}$$

$$\lim_{h \to 0} \frac{k(h) - k(0)}{h} = \lim_{h \to 0} \frac{-h + 1 + e^{\frac{1}{h+1}} - 1 - e}{h}$$

$$= \lim_{h \to 0} \left(-1 + \frac{e^{\frac{1}{h+1}} - e}{h} \right) = \lim_{h \to 0} \left(-1 + \frac{e^{\left(e^{-1}e^{\frac{1}{h+1}} - 1\right)}}{h} \right)$$

$$= \lim_{h \to 0} \left(-1 + \left(\frac{e^{\frac{-h}{h+1}} - 1}{\frac{-h}{h+1}} \right) \times \frac{-e}{h+1} \right) = -1 - e$$

$$\lim_{h \to 0} \frac{k(h) - k(0)}{h} = \lim_{h \to 0} \frac{h + 1 + e^{\frac{1}{h+1}} - 1 - e}{h}$$

$$= \lim_{h \to 0} \left(1 + \frac{e^{\frac{-h}{h+1}} - 1}{\frac{-h}{h+1}} \times \frac{-e}{h+1} \right) = 1 - e$$

$$\lim_{h \to 0} \frac{k(h) - k(0)}{h} \neq \lim_{h \to 0} \frac{k(h) - k(0)}{h} :$$

$$\lim_{h \to 0} \frac{k(h) - k(0)}{h} = \lim_{h \to 0} \frac{k(h) - k(0)}{h} :$$

k . 0 في الدالـــة k لا تقبل الاشتقاق في

ب) التفسير الهندسي: بماأن الدالة k قابلة للإشتقاق في 0 من k اليمين وقابلة للاشتقاق في 0 من اليسار فإن منحنى الدالة يقبل نصفى مماسين في النقطة التي فاصلتها 0 ومنه هی نقطة زاویة. A(0;e+1)

كتابة معادلتي نصفي المماسين (Δ_1) و (Δ_2) للمنحني /2

2as.ency-education.com

 $\lim_{x \to \infty} \left[f(x) - (-x+1) \right] = \lim_{x \to \infty} \left| \frac{2}{x} (1 + \ln x) \right| = \lim_{x \to \infty} \left| \frac{2}{x} + \frac{\ln x}{x} \right| = 0$ $\underline{\cdot}(\Delta)$ بالنسبة لمنحنى ج) دراسة وضعية المنحنى المنحنى المنحنى المنحنى المنحنى المنحن لدينا $[f(x)-(-x+1)] = \frac{2}{(1+\ln x)}$ و منه إشارة 0 الفرق هي من إشارة $(1+\ln x)$ وهي : 01+lnx - 0 + $\frac{1}{|a|}$; $+\infty$ على على (C_f) يقع فوق (C_f) وتحت (Δ) على المجال $\frac{1}{a}$ و (C_f) يقطع (Δ) في النقطة (Δ_1) $\left(\frac{1}{e}; \frac{-1+e}{e}\right)$ circle if $f'(x) = \frac{-g(x)}{x^2}$ <u>نبات انه من أجل كل x من يمن أجل كل الثبات انه من أجل كل الثبات انه من أجل كل الثبات النه من أجل كل الثبات الثبات</u> الدالة f قابلة الاشتقاق على $D_{_f}$ و دالتها المشتّقة f' حيث $f'(x) = -1 + \left[\frac{-2}{x^2} (1 + \ln x) + \frac{2}{x} \cdot \frac{1}{x} \right] = -\frac{\left(x^2 + 2\ln x\right)}{x^2} = \frac{-g(x)}{x^2}$ D_f من x من أجل كل x من أجل كل من أجل من الدالة بالدالة من أجل كل xلدينا : إشارة f'(x) هي عكس إشارة g(x) وهي : st جدول تغيرات الدالة f: f'(x)f'(x)f(x)نحل المعادلة (C_f) نحل المعادلة (C_f) نبين أن (C_f) نحل المعادلة $x^{2} + 2 \ln x = x^{2}$ معناه $\frac{-g(x)}{x^{2}} = -1$ معناه f'(x) = -1(T) ومنه $\ln x = 0$ ومنه $\ln x = 0$ ومنه $\ln x = 0$ y=-x+3 يو از ي (Δ) عند النقطة ذات الفاصلة x=1ب * التمثيل البياني: <u>مُركِّ</u> معيين m حتى تقبل المعادلة (E حلین مختلفین $m = \frac{2}{x} (1 + \ln x)$ تكافئ m=f(x)-1+x أي أن (Δ) (C_f) f(x) = -x + m + 1حلول $\left(E \right)$ هي فواصل نقاط تقاطع حلول $\left(E \right)$ مع المستقيمات ذات المعادلة (Δ) و (T) الموازية لـ y=-x+m+1 ومنه نجد: المعادلة (E) تقبل حلين متمايزين موجبين تماما : من أجل

y=-x+2یقبل مستقیما مقاربا مائلا عند $+\infty$ معادلته (C_a) : $x_0=0$ عند النقطة التى فاصلتها $\left(C_k\right)$ $(\Delta_1): y = (1-e)x + e + 1$; $x \le 0$ $(\Delta_2): y = (-1-e)x + e + 1 \quad ; \quad x \ge 0$ $: (C_k)$ و (Δ_1) : (Δ_1) درسم (Δ_1) $\left[k\left(x\right)=f\left(x\right) \quad ; \quad x\in\left]-\infty;-1\left[\bigcup\right]-1;0\right]$ $\int k(x) = g(x) \quad ; \quad x \ge 0$ $\left(igcap_f
ight)$ ومنه $\left(igcap_f
ight)$ ينطبق على على المجالين [0]-[،]-∞; ا $\left(C_{g}
ight)$ و پنطبق علی اینطبق علی $[0;+\infty]$ على المجال التمرين الثالث: $g(x) = x^2 + 2 \ln x$ بـ: $g(x) = x^2 + 2 \ln x$ بـ: $g(x) = x^2 + 2 \ln x$ $\lim_{x \to \infty} g(x) = +\infty \cdot \lim_{x \to \infty} g(x) = -\infty \cdot g$

 $g'(x) = 2x + \frac{2}{x} > 0$:]0; + ∞ [على على g $[0;+\infty]$ ومنه الدالة g متزايدة تماما على $\infty+$ جدول التغيرات: $\infty+$

تبيان أن المعادلة g(x) = 0 تقبل حلاق حيدا β حيث مستمرة ومتزايدة تماماً على g مستمرة ومتزايدة تماماً على

<u>0.75;0.76</u> فهي مستمرة ومتزايدة تماما على |0.75;0.76]

 $g(0.75) \times g(0.76) < 0$ اِذنg(0.76) = 0.029 يا g(0.75) = -0.013ومنه و حسب مبر هنة القيم المتوسطة المعادلة g(x)=0 تقبل $0.75 < \beta < 0.76$ حيث $\beta = 0.75 < \beta$

 $D_f =]0; +\infty[\cdot f(x) = 1 - x + \frac{2}{x}(1 + \ln x)$ (II

 $+\infty$ و 0 عند 0 و $+\infty$ الدالة $+\infty$ عند $+\infty$ و $+\infty$

 $\lim_{x \to \infty} f(x) = -\infty \quad ; \quad \lim_{x \to \infty} f(x) = -\infty$

ب نبین أن (C_f) يقبل مستقيما مقاربا (Δ) معادلته

 $m \in]0;2[$ أي $m+1 \in]1;3[$