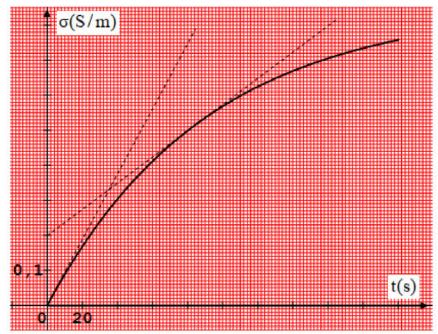
A STANDER PROPERTY OF THE STANDER OF

الفرض الأول فسي ماحة العلوم الفيزيائية

2021/01/10


المستوى الدراسي : ثالثة تقني رياضي المستوى الدراسي : ثالثة تقني رياضي

التمرين الأول:

النوع الكيميائي: 2- كلور 2- مثيل بروبان يتميه حسب المعادلة التالية:

 $(CH_3)_3C-C1 + 2 H_2O = (CH_3)_3C-OH + H_3O^+_{(aq)} + Cl^-_{(aq)}$

نتابع النطور الزَّمْني لهذا النَّحول عن طريق قياس الناقلية النوعية σ . لذا ندخل عند الدرجة $20^{\circ}\mathrm{C}$ في بيشر $V_1=20~\mathrm{mL}$ من محلول 2- كلور 2- مثيل بروبان تركيزه المولي $V_1=20~\mathrm{mL}$ و مزيج يتكون من (acétone + $V_2=80~\mathrm{mL}$) حجمه $V_3=80~\mathrm{mL}$. نوصل (ماء + $V_3=100~\mathrm{mL}$) حجمه $V_3=100~\mathrm{mL}$. نوصل جهاز قياس الناقلية بشكل مناسب و بعد القياس و إجراء الحساب نحصل على البيان $\sigma=f_1(t)$ التالي :

. $\lambda(\text{Cl}^-) = 7.6 \cdot 10^{-3} \text{ S.m}^2/\text{mol}$ ، $\lambda(\text{H}_3\text{O}^+) = 35.5 \cdot 10^{-3} \text{ S.m}^2/\text{mol}$. $\lambda(\text{Cl}^-) = 7.6 \cdot 10^{-3} \text{ S.m}^2/\text{mol}$

1- اشرح لماذا يمكن متابعة هذا التحول عن طريق قياس الناقلية ، و لا يمكن متابعته عن طريق قياس الضغط.

2- مثل جدول تقدم التفاعل ثم حدد منه قيمة التقدم الأعظمي Xmax.

 $\sigma_{(t)} = 431\,\mathrm{x}_{(t)}$: أثبت أنه يمكن التعبير عن الناقلية النوعية σ بالعلاقة و 3

4- هل انتهى التفاعل عند اللحظة t = 200 s ، بين ذلك .

. من البيان . $\sigma_{1/2} = \frac{\sigma_{max}}{2}$ من البيان . $\sigma_{1/2} = \frac{\sigma_{max}}{2}$ من البيان . $\sigma_{1/2} = \frac{\sigma_{max}}{2}$

6- أحسب سرعة التفاعل عند اللحظتين t = 80 s ، t = 0 ، فسر سبب الاختلاف في النتيجة .

7- نعيد التجربة السابقة عند درجة الحرارة $\sigma = f_2(t)$ ، أرسم على نفس البيان السابق المنحنى $\sigma = f_2(t)$ عند هذه الدرجة ($\sigma = f_2(t)$) .

التمرين الثاني:

لا يوجد البلوتونيوم $^{241}_{92}$ في الطبيعة ، و للحصول على عينة من أنويته يتم قذف نواة $^{238}_{92}$ في مفاعل نووي بعدد $_{x}$ من النيترونات ، حيث يمكن نمذجة هذا التحول النووي بتفاعل معادلته :

$$^{238}_{92}\text{U} + \text{x} ^{1}_{0}\text{n} \rightarrow ^{241}_{94}\text{Pu} + \text{y} ^{0}_{-1}\text{e}$$

1- أ- بتطبيق قانوني الانحفاظ عين قيمتي x و y .

. $^{A}_{Z}Am$ و نواة البلوتونيوم $^{241}_{Z}Pu$ أثناء تفككها جسيمات $^{-3}_{Z}Pu$ و نواة الأمريكيوم

أكتب معادلة التفكك النووي للبلوتونيوم و حدد قيمتي A و Z .

جـ- أحسب قيمة طاقة الربط لكل نيوكليون (نوية) مقدرة بـ MeV لنواتي $^{241}_{94}$ و Am ثم استنتج أيهما أكثر استقر ار .

. كا على N_0 نواة t=0 المشع في اللحظة t=0 على N_0 نواة t=0

 A_0 و t نشاط هذه العينة في أزمنة مختلفة تم الحصول على النسبة $\frac{A(t)}{A_0}$ حيث A(t) نشاط العينة في اللحظة و A_0

t=0 نشاطها في اللحظة t=0 فحصلنا على النتائج التالية

t (ans)	0	3	6	9	12
$\frac{A(t)}{A_0}$	1.00	0.85	0.73	0.62	0.53

. $\ln \frac{A(t)}{A_0} = f(t)$: البيان : مليمترية مليمترية ، البيان :

. t بدلالة $\ln \frac{A(t)}{A_0}$ بدلالة λ و $\ln \frac{A(t)}{A_0}$

جـ عين بيانيا قيمة ثابت التفكك λ و استنتج t_{1/2} قيمة ز من نصف عمر البلوتونيوم Pu .

 $m(_{Z}^{A}Am) = 241.00457 \ u \ \cdot \ m_{(P)} = 1.00728 \ u \ \cdot \ m(^{241}Pu) = 241.00514 \ u : المعطيات المعط$

$$m(n) = 1.00866 u$$
 ' $1 u = \frac{931.5}{c^2} Mev$

أستاذة العادة: خريجة فمرينى