التمرين الأول: (الانقط)

الماء الأكسيجيني سائل شفاف عديم اللون و الرائحة ، و له استعمالات كثيرة في الحياة اليومية كتبييض الملابس و تنظيف الأرضيات و تطهير و تعقيم فرشات الأسنان و توقيف النزيف الدموي .

يهدف هذا التمرين الى تتبع تطور تفاعل الماء الأكسيجيني مع شوارد اليود في وسط حمضي عن طريق قياس الناقلية.

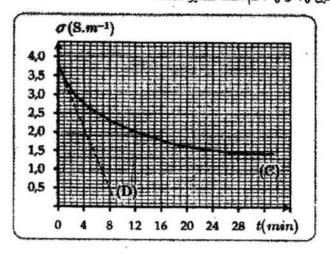
في محلول مائي و عند درجة الحرارة 20°c € . يتفاعل الماء الأكسيجيني مع شوارد اليود وفق المعادلة الكيميائية التالية :

$$H_2O_{2(aq)} + 2I_{(aq)} + 2H_3O_{(aq)}^+ \longrightarrow I_{2(aq)} + 4H_2O_{(0)}$$

المحلول المائي لثنائي اليود (I2 aq) يتميز باللون البني في حين المحليل المتبقية عديمة اللون .

عند اللحظة t=0 . نحضر مزيجا تفاعليا حجمه $V_{\rm T}=V_1+V_2+V_3=1,01$. $10^{-4}~{
m m}^3$ وذلك بزج:

$$C_1 = 0.056 \; ext{mol.L}^{-1}$$
 تركيزه المولي $V_1 = 50 \; ext{mL}$ حجم $V_1 = 50 \; ext{mL}$ حجم


.
$$C_2$$
 = 0,2 mol. L^{-1} من محلول يود البوتاسيوم ($K^+_{aq} + \Gamma_{aq}$) تركيزه المولي V_2 = 50 mL حجم V_2

.
$$C_3 = 3 \text{ mol.L}^{-1}$$
 تركيزه المولي ($2 H_3 O_{aq}^+ + SO_4^{-2}_{aq}$) تركيزه المولي $V_3 = 1 \text{ mL}$ حجم $V_3 = 1 \text{ mL}$

 $(S.m^2. mol^{-1})$: بعطى الناقلية النوعية المولية لكل شاردة ب

$$\lambda_{sol} = 8.010^{-3}$$
; $\lambda_{K^*} = 7.35.10^{-3}$; $\lambda_{I^*} = 7.68.10^{-3}$; $\lambda_{H,O^*} = 35.10^{-3}$

- 1. كيف يمكن التأكد تجرببيا حدوث تحول كيميائي و انه بطيء ؟
 - 2. عين الثنائيتين (مرجع / مؤكسد) المشاركتين في التفاعل.
- 3. أوجد كميات المادة الابتدائية للمتفاعلات. ثم أنشئ جدول تقدم التفاعل ، ثم أوجد التقدم الأعظي و المتفاعل المحد.
- 4. بالاستعانة بجدول التقدم ، بين أن الناقلية النوعية في الوسط التفاعلي عند اللحظة $\sigma = 3.8 845.x$ عيث $\sigma = 3.8 845.x$. ($S.m^{-1}$) .
 - استنتج القيمة النهائية للناقلية النوعية σ عند نهاية التحول.
 - $\sigma = f(t)$ نغيرات الناقلية النوعية بدلالة الزمن (C).
 - حدد قيمة زمن نصف التفاعل 1/2.
 - t=0 عند (mol.m $^{-3}$.min $^{-1}$) عند أحسب قيمتها بـ ($\frac{d\sigma}{dt}$ عند v_0 عند السرعة الحجمية للتفاعل عند المرعة الحجمية للتفاعل عند المرعة الحجمية التفاعل عند المرعة الحجمية المرعة الحجمية المرعة الم
 - 7. نعيد التجربة في ظروف مختلفة بحيث يكون H_2O_2 H_1O_2 H_2O_2 أنقل البيان (C) و ارسم معه كيفيا البيان في هذه الظروف معللا جوابك.
- 8. نعيد التجربة الأولى عند درجة الحرارة $\theta' = 50^{\circ}c$ فنجد السرعة الحجمية عند t = 0 هي t = 0 . قارن السرعتين الحجميتين t = 0 علم تفسيرا لذلك.

التعرين العملان [الان]

نتوفر في اللحظة t=0 على مزيج سطوكيومتري من شوارد البيروكسوديكبريتات $S_2O_8^2$) و شوارد اليود T-1): يحدث تحول كيميائي تام بين الشاردتين عند درجة الحرارة $O=25^{\circ}$. جدول النتائج المرفق يبين تطور كمية مادة البيروكسوديكبريتات بدلالة الزمن t

t (min)	0,0	2,5	5,0	10,0	15,0	20,0	25,0	30,0
$n(S_2O_8)$ (mmol)	10,0	9,0	8,3	7,0	6,2	5,4	4,9	4,4

- 1- أكتب المعادلتين النصفيتين للأكسدة و الإرجاع ,و معادلة تفاعل الأكسدة الإرجاعية الحادث ,علما أن الثنائيتين I_2/I^- ; $S_2O_8^2$ S_3/SO_4^2 و معادلة تفاعل الأكسدة الإرجاعية الحادث ,علما أن الثنائيتين I_2/I^- ; S_2O_8
 - 2- استنتج كمية المادة الابتدائية للمتفاعلات.
 - 3- أنشئ جدول تقدم التفاعل.
 - $S_2O_8^2$ بدلالة الزمن. (يعطى $S_2O_8^2$ مادة $S_2O_8^2$ بدلالة الزمن. (يعطى S_2O_8 مادة S_2
 - 5- أوجد التركيب المولي للمزيج عند اللحظة t=10 min -
 - 6- أ) أحسب سرعة اختفاء شوارد البيروكسوديكبريتات عند اللحظة t=10 min .
 - ب) استنتج قيمة سرعة التفاعل ,ثم فسر مجهريا كيفية تغير ها خلال الزمن.
 - ج) استنتج سرعة اختفاء شوارد اليود مع التعليل.
 - 7- استنتج زمن نصف التفاعل, كيف تتغير قيمته إذا أجريت التجربة عند 100°C, مع التعليل.