المدة 03 ساعات ونصف

الشعبة: علوم تجريبية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (4.5 نقطة)

 (Δ) ، B(3;0;1) و A(0;-1;3) و A(0;-1;3) المستقيم المار بالنقطتين (D) ، $(D;\vec{i};\vec{j};\vec{k})$ و الفضاء منسوب إلى معلم متعامد ومتجانس

$$\begin{cases} x-2y+3=0 \\ y+z-1=0 \end{cases}$$
 : المستقيم المعرف بجملة المعادلتين

 (Δ) أ- أكتب تمثيلا وسيطيا لكل من المستقيمين (D)و (Δ).

(D) ب- أدرس الوضع النسبي للمستقيمين (Δ) و

- . (Δ) المستوي الذي يشمل (D) ويوازي (Δ)
- اكتب تمثيلا وسيطيا للمستوي (p) ، ثم استنتج معادلة ديكارتية له .
 - . (D) ويوازي (Δ) المستوي الذي يشمل (D) ويوازي (3
- بين أن (-1;1;-1) شعاع ناظمي للمستوي (p') ، ثم اكتب معادلة ديكارتية له .
 - . (p) والمستوي (Δ) أ- أحسب المسافة بين نقطة كيفية من
 - (p') والمستوي ((p') والمستوي ((p') والمستوي ((p'))
 - . (Δ) و (D) بين المستقيمين

التمرين الثاني: (5 نقاط)

- . $\operatorname{Arg}(Z^n) = n . \operatorname{Arg}(Z): n$ عدد مرکب، بین أنه من أجل کل عدد طبیعي غیر معدوم Z
- . $(Z-2i)(Z^2-2\sqrt{3}Z+4)=0$: Z المعادلة ذات المجهول ($Z-2i)(Z^2-2\sqrt{3}Z+4)=0$) حل في مجموعة الأعداد المركبة
- 2) في المستوي المركب المنسوب إلى معلم متعامد و متجانس $(O; \vec{u}; \vec{v})$. نعتبر النقط $D \circ C \circ B \circ A$ و $C \circ B \circ A$
 - . على الترتيب $Z_D = -\sqrt{3} i$ و $Z_C = 2i$ ؛ $Z_B = \sqrt{3} + i$ ؛ $Z_A = \sqrt{3} i$
 - أ علم النقط A ، B ، A و D .
 - .ABC على الشكل الجبري ثم على الشكل الأسي . استنتج طبيعة المثلث بـاكتب العدد $\frac{Z_A-Z_B}{Z_C-Z_B}$
 - ج تحقق أن النقط C 'B 'A و D تنتمي إلى الدائرة يطلب تعيين مركزها و نصف قطرها.
 - . $k \in \mathbb{Z}$ مع $Arg\left(\frac{z-z_A}{z-z_B}\right) = \frac{\pi}{2} + k\pi$: من المستوي حيث M(z) مع M(z)
 - D النعتبر التحويل النقطي S الذي يحول O إلى A و يحول C إلى C
 - أ اثبت أن التحويل S هو تشابه مباشر ثم عين عناصره المميزة (المركز و النسبة و الزاوية) .
 - C ب تحقق أن صورة النقطة B بالتشابه S هي النقطة
 - 4) لتكن النقطة Gمرجح النقط G ، G ، G المرفقة بالمعاملات G ، G على الترتيب. G أ— عين احداثيي النقطة G .
 - $MA^2 MB^2 + 2MC^2 = 8$ بين ان (Γ) مجموعة النقط Mمن المستوي التي تحقق G هي الدائرة التي مركزها G و نصف قطرها G

التمرين الثالث: (4 نقاط)

$$\mathbf{u}_{_{\mathrm{n+2}}} = \mathbf{u}_{_{\mathrm{n+1}}} - \frac{1}{4}\mathbf{u}_{_{\mathrm{n}}}$$
: المعرّفة على $\mathbf{u}_{_{\mathrm{n}}} = \frac{1}{2}$: $\mathbf{u}_{_{\mathrm{0}}} = -1$: ومن أجل كل عدد طبيعي المعرّفة على $\mathbf{u}_{_{\mathrm{n+2}}} = -1$

.
$$\mathbf{v}_{_{\mathrm{n}}}=\mathbf{u}_{_{\mathrm{n+1}}}-\frac{1}{2}\mathbf{u}_{_{\mathrm{n}}}$$
ب المعرّفة على ($\mathbf{v}_{_{\mathrm{n}}}$) المعرّفة على المتتالية (

1) ا- احسب ، 1

ب- أثبت أنّ (٧) متتالية هندسيّة يطلب تعيين أساسها.

. v_n بدلالة v_n بدلالة

. $\lim_{n \to \infty} S_n = v_0 + v_1 + \cdots + v_n$: د- احسب ، بدلالة n ، المجموع

. $\mathbf{w}_{_{n}}=\frac{\mathbf{u}_{_{n}}}{\mathbf{v}_{_{n}}}$: من أجل كل عدد طبيعي (2

ا- احسب w . W

بـ- بیّن أنّ (\mathbf{w}_n) متتالیة حسابیّة یطلب تعیین أساسها.

 $\mathrm{e}^{\mathrm{w}_{\mathrm{n}}} \geq 2016$: الذي يحقق m الذي يحقق w_{n} بدلالة w_{n} بدلالة

التمرين الرابع: (6.5 نقطة)

 $f(x) = x + 1 + \ln(x + 1) - \ln(x + 2)$: كما يلي $[-1; +\infty[$ لمعرفة على المعرفة على المعرفة على المعرفة على المعرفة على المعرفة على المعرفة على معلم متعامد و متجانس (C_f) وحدة الطول (C_f)

- $\lim_{x \to -1} f(x) \pmod{1}$
- $+\infty$ عند f غایة الدالة $\int_{x\to+\infty} \ln\left(\frac{x+1}{x+2}\right) = 0$ بین أن (2
- (C_f) عند (C_f) عند مقارب مائل المنحني (Δ) عند (3) بين أن المستقيم (Δ) بين أن المستقيم المقارب المائل. ثم أدرس وضعية المنحني (C_f) بالنسبة المستقيم المقارب المائل.
 - 4) ادرس تغیرات الدالة f و شكل جدول تغیراتها .
 - x=0 اكتب معادلة المماس (T) عند النقطة التي فاصلتها (5
- . $-\frac{1}{2} < \alpha < 0$: حيث α المنحنى (6) بين أن المنحنى عديدة على محور الفواصل في نقطة وحيدة فاصلتها عديد (6) والمنحنى (6) والمنحنى (7) والمنحنى (8) والمنحنى
 - (C_f) و (T) أرسم المنحنى (C_f) و المستقيمان (7
 - $f(x) = \frac{3}{2}x + m$ ناقش بيانيا و حسب قيم الوسيط الحقيقي m حلول المعادلة (8
 - $f_a: x \to \ln(x+a)$ أ بين أن الدالة $F_a: x \to (x+a)\ln(x+a) x$ هي دالة أصلية للدالة $-a; +\infty$ على المجال] $-a; +\infty$

x=1 ، x=0 ، y=x+1 احسب مساحة الحيز للمستوي المحدد بالمنحنى (C_f) و المستقيمات

الموضوع الثاني

التمرين الأول: (4 نقاط)

من مترشحي قسم 3 ت يعملون بجد خلال السنة الدراسية $\frac{3}{4}$

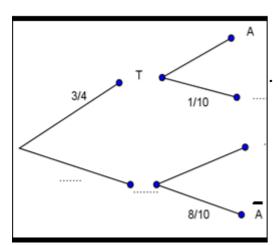
 $\frac{2}{10}$ احتمال نجاح مترشح یعمل بجد هو $\frac{9}{10}$ و احتمال نجاح مترشح لم یعمل بجد

نقول عن مترشح انه مفاجأة إذا عمل بجد ولم ينجح أو نجح و لم يعمل بجد.

نعتبر الحوادث:

المترشح يعمل بجد " ، A " المترشح ناجح " و S " المترشح مفاجأة " T

نختار عشوائيا مترشحا من هذا القسم:


1- انقل و أكمل شجرة الاحتمالات المقابلة:

 $\overline{T} \cap A$, $T \cap \overline{A}$, $T \cap A$: أحسب احتمالات الحوادث-2

. -3 ما هو احتمال أن يكون المترشح ناجحا

4- علما أن المترشح ناجح ، مااحتمال أن يكون عَمل بجد .

0,125 : هو S احتمال S هو -5

التمرين الثاني: (5 نقاط)

 $\overline{Z \times Z'} = \overline{Z} \times \overline{Z'}$: $Z \circ Z$ عدد ين مركبين $Z \circ Z \circ Z'$.

 $\overline{Z^n} = \left(\overline{Z}\right)^n$: n عدد مرکب، بین أنه من أجل كل عدد طبیعي Z.

 $Z^4 = -4 \cdots (E)$ المعادلة: C المعادلة: .]

1. بين أنه إذا كان العدد المركب Z حل للمعادلة (E)فإن كل من Z و \overline{Z} حل كذلك للمعادلة (E).

. (E) نضع i+i وبين أنه حل للمعادلة Z_0 على الشكل الأسي وبين أنه حل للمعادلة (.2 ب) استنتج الحلول الثلاثة الأخرى للمعادلة (.2).

.F = R(D) و E = R(B)

1. عين الكتابة المركبة للدوران R.

.2 عين Z_F ، Z_E على الترتيب .2

F ، E ، A النسبة للنقاط عدد حقيقي، ماذا تستنتج بالنسبة للنقاط عدد $\frac{Z_A-Z_E}{Z_A-Z_F}$ 3.

الصفحة 3 من4

التمرين الثالث: (4.5 نقطة)

C(3;3;-2) و B(3;0;4)، A(1;-1;2) نعتبر النقط B(3;0;4)، معلم متعامد و متجانس $O(\vec{i},\vec{j},\vec{k})$ نعتبر النقط

.
$$\overrightarrow{V}$$
 $(-6;-6;0)$: والمستقيم $\lambda\in\mathbb{R}$ عيث $x=-2\lambda-1$ $y=2\lambda-2$ $z=-8\lambda$

- \overrightarrow{ABC} احسب: $\overrightarrow{AB}.\overrightarrow{AC}$ واستنتج طبیعة المثلث (1
- . [AC] عين احداثيات النقطتين: I ، G حيث G مرجح الجملة G مرجح الجملة G منتصف G عين احداثيات النقطتين: G ما طبيعة الرباعي G ما طبيعة الرباعي G منتصف
 - $3MA^2 2MB^2 + MC^2 = 18$: مجموعة النقاط M من الفضاء (3) عين (أ) مجموعة النقاط عن الفضاء (3) مجموعة النقاط M
 - \overrightarrow{MG} . \overrightarrow{V} = -18 : مجموعة النقاط M من الفضاء (P) مجموعة النقاط
 - . $(S) \cap (P)$: عين العناصر المميزة للمجموعة عين العناصر
 - . (D) و (ABC) يتقاطعان وفق المستقيم (P): د) بين أن

التمرين الرابع: (6.5 نقطة)

 $g(x) = e^{-x} + x - 1$: ينعتبر الدالة g المعرفة على كما يلي (I

1) ادرس تغيرات الدالة g.

 $g(x) \ge 0$; $x \in \mathbb{R}$ احسب (0) و استنتج انه من اجل کل

 $(o;\vec{i};\vec{j})$ م م (c_f) المنحنى الممثل للدالة (c_f) في المعلم م (c_f) وليكن (c_f) وليكن (c_f) المنحنى المعلم م (c_f)

. ين أنه من أجل كل x من \mathbb{R} فإن: $f(x) = \frac{1}{1 + \frac{1}{xe^{-x}}}$. ثم أحسب f(x) ; $\lim_{x \to -\infty} f(x)$; ثم أحسب f(x) . ثم أحسب f(x)

$$f'(x) = \frac{(1+x)e^{-x}}{(x+e^{-x})^2}$$
 : $x \in \mathbb{R}$ کی (2

Oأكتب معادلة المماس للمنحنى عند النقطة أ

. y=x: أن $x\in\mathbb{R}$ أن حقق من أجل كل $x=f(x)=\frac{xg(x)}{g(x)+1}$ ثم استنتج الوضع النسبي لـ x=xالمستقيم x=x

$$\frac{1}{1-e} \approx -0.6$$
 :اَنشئ $(o; \vec{i}; \vec{j})$ في المعلم ((Δ) في المعلم ((C_f)) أنشئ (5

- . $0 \le u_n \le 1$: $n \in \mathbb{N}$ کل من أجل أن من بالتراجع أن من أجل (1
- ((4(II لين أن المتتالية (U_n) متناقصة (يمكنك استعمال نتيجة السؤال (2)
 - . استنتج أن $\left(U_{\scriptscriptstyle n}\right)$ متقاربة ثم حدد نهايتها (3