الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية البليدة

دورة ماى 2022

ثانویة الشهید قصار محمد-مفتاح-إمتحان بکالوربا تجریبی

شعبة: علوم تجرببية

إختبار في مادة : الرياضيات المدة : 03 ساعات و نصف

على المترشح أن يختار أحد الموضوعين الأتيين:

(الموضوع الأول)

التمرين الأول: (04 نقط)

عيّن الإقتراح الصحبح الوحيد من بين الإقتراحات الثلاثة في كل حالة من الحالات التالية ، مع التبرير:

 α تساوي: α تشكل حدودا متتابعة لمتتالية هندسية،فإن α نشكل α ($e^{-2}-e^{-4}$) وأدا كانت الأعداد (e^{-2})، وأدا كانت (e^{-2})، وأدا كانت (e^{-2}) وأدا كانت (e^{-2})، وأدا كانت (e^{-2}) وأدا كانت (e^{-2})، وأدا كانت (e^{-2}) وأدا كانت (e^{-2})، وأدا كانت (e^{-2}) وأدا كانت (e^{-2})، وأدا كانت (e^{-2}) وأدا كا

$$(e^{-2}-e^{-6})$$
 ($=$ $(e^{-4}-e^{-6})$ ($=$ $(1-e^{-4})$ ($=$

3. الدالة $f:x\longrightarrow ln(2x+4)$ للدالة $f:x\longrightarrow ln(2x+4)$ المعرفة ب

$$f(x) = \frac{1}{2x+4}$$
 (z $f(x) = \frac{1}{x+2}$ (z $\frac{ln(2x+4)}{2}$ (z

التمرين الثاني: (04 نقط)

تحتوي علبة على مجموعة من القريصات، نصف القريصات سوداء (N) وثلثها خضراء (V)وسدسها صغراء (J). أما بقية 75% من القريصات السوداء و 50% من القريصات الخضراء و 25% من القريصات الصغراء شكلها دائري (O). أما بقية

القريصات فشكلها مربع (S)

نسحب قريصة واحدة من العلبة.

- 1) شكل شجرة الاحتمالات التي تنمذج الوضعية.
 - 2) احسب الاحتمالات التالية:

الحدث A: القريصة المسحوبة خضراء دائرية"

الحدث B: القريصة المسحوبة سوداء مربعة"

الحدث C:" القريصة المسحوبة دائرية"

3) اذا سحبنا قريصة دائرية الشكل، فما هو احتمال أن تكون خضراء؟

4) نفرض أن مجموع القريصات في العلبة هو 24 قريصة.

أ) أكمل الجدول التالي:

اللون الشكل	N	V	J	المجموع
О				
S				
المجموع				24

ب) نسحب في آن واحد ثلاث قريصات من العلبة.

- الشكل الشكل المسحوبة من نفس الشكل P(E) احسب P(E)
- احسب P(F) احتمال أن تكون القريصات المسحوبة من نفس اللون
- إذا كانت القربصات المسحوبة من نفس الشكل،فماهو احتمال أن تكون من نفس اللون؟

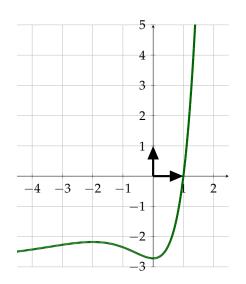
التمرين الثالث: (05 نقط)

. $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$: n عدد طبیعي ، ومن أجل كل عدد $u_0 = 2$ ، ومن أجل كل عدد المتتالية العددية (u_n)

- (u_n) ثم خمن اتحاه تغير المتتالية u_3 و u_2 ، u_1 .1
- $u_n \leq n+3$: برهن بالتراجع أنه من أجل كل عدد طبيعي n+3
- - $v_n = u_n n$: متتالیة معرفة من أجل کل عدد طبیعی (v_n) متتالیة معرفة من
- v_n و v_n بدلالة v_n ، ثم أكتب v_n و v_n بدلالة v_n
 - $\lim u_n$ استنج (ب
 - $S_n = v_0^2 + v_1^2 + ... + v_{n-1}^2$: احسب بدلالة (ج

التمرين الرابع: (07 نقط)

 $g(x)=x^2e^x-e$ بـ الدالة العددية g معرّفة على الدالة العددية العددية ومعرّفة على الدالة العددية ا


وليكن (C_g) التمثيل البياني لـ g في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(C; \overrightarrow{i}, \overrightarrow{j})$ (تؤخذ وحدة الطول (2cm

- .g(1) احسب ا.1
- g(-x) فيم x اشارة g(x) ثم استنتج حسب قيم g(x) اشارة أيد.

 (C_f) نعتبر الدالة f المعرفة على \mathbb{R}^* بـ \mathbb{R}^* بـ و $f(x)=e^{-x}-2-\frac{e}{x}$ نعتبر الدالة f المعرفة على المستوي المنسوب إلى المعلم المتعامد و المتجانس تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس . $O; \overrightarrow{i}, \overrightarrow{j}$

- $\lim_{x \to 0} f(x)$ ، $\lim_{x \to 0} f(x)$ ، $\lim_{x \to \infty} f(x)$ ، احسب النهایات التالیة: $\lim_{x \to 0} f(x)$ ، $\lim_{x \to \infty} f(x)$. $\lim_{x \to \infty} f(x)$
- $f'(x) = \frac{-g(-x)}{x^2}$: بین أنه من أجل كل عدد حقیقي غیر معدوم x
- $0;+\infty[$ و $]0;+\infty[$ و $]0;+\infty[$ و $]0;+\infty[$ و $]0;+\infty[$ ، و متناقصة تماما على المجال $]0;+\infty[$ ، ثم شكل جدول تغيراتها.
- (C_f) في المنحنى $y=e^{-x}-2$ في المعادلة $y=e^{-x}-2$ في المنحى $y=e^{-x}-2$ متقاربان بجوار x=0 ثم ادرس الوضع النسبي لهما.
- من $(x) \longrightarrow e^x$ الدالة (x) انظلاقا من منحنى الدالة $(x) \longrightarrow e^x$ ثم أنشء كلا من (x) و (x) في المعلم السابق.

x=e المستقيمات (C_f) والمستقيمات x=e المستقيمات x=e مساحة الحيز المحدود ب $x=e^2$

إنتهى الموضوع الأول

(الموضوع الثاني)

التمرين الأول: (04 نقط)

عيّن الإقتراح الصحيح الوحيد من بين الإقتراحات الثلاثة في كل حالة من الحالات التالية ، مع التبرير:

- 1. إذا كانت f حلا للمعادلة التفاضلية y'=-2y و y'=-2y و طع حامل محور التراتيب عند $\frac{3}{2}$ فإن مساحة الحيز المحدد y=0 و المستقيمات y=0 و y=0 و المستقيمات y=0 و المستقيم و المستون و المستقيم و المستوت و ا
 - $\frac{1}{3}u.a$ ($\frac{3}{2}u.a$ ($\frac{2}{3}u.a$ ()
 - 2. يتكون فريق عمل من 4 إناث و 3 ذكور ، يراد تشكيل لجنة تضم 3 أعضاء.

إحتمال أن تكون اللجنة من الجنسين هو:

$$\frac{1}{7}$$
 (ε $\frac{4}{7}$ ($\dot{\varphi}$ $\frac{6}{7}$ ($\dot{\uparrow}$

(النيبيري) متتالية هندسية أساسها e و حدها الأول u_0 ، حيث $e^{-\frac{1}{2}}$. $u_0=e^{-\frac{1}{2}}$. $u_0=e^{-\frac{1$

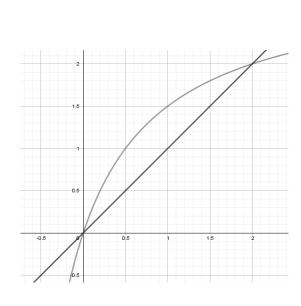
 S_n يساوي:

$$\frac{n^2}{2}$$
 ($\approx \frac{n^2+1}{2}$ ($= \frac{n^2-1}{2}$ ()

التمرين الثاني: (04 نقط)

يحتوي كيس على أربع كريات حمراء تحمل الرقم α ، وثلاث كريات خضراء تحمل الرقم $\alpha-1$ ، وكريتين بيضاويتين تحملان الرقم α ، عدد طبيعي فير معدوم.

الكريات متماثلة ولإنفرق بينها باللمس، نسحب عشوائيا من الكيس ثلاث كريات في آن واحد.


- 1. أ) احسب احتمال الأحداث C،B،A، حيث:
- الحدث A: " الحصول على كرية بيضاء على الأكثر "
- الحدث B:" الحصول على ثلاث كريات تحمل نفس الرقم"
- " $\alpha-1$ الحصول على كريتين بالضبط تحملان الرقم :C
- $\frac{2}{7}$ بين أن احتمال الحصول على ثلاث كريات تحمل ألوان العلم الوطني هو
- X=0 و المتغير العشوائي X الذي يرفق بكل سحبة، مجموع الأرقام الظاهرة على الكريات المسحوبة الحمراء و X=0 إذا لم تسحب كرية حمراء.
 - $X = \{0, \alpha, 2\alpha, 3\alpha\}$) ابرر أن مجموعة قيم X هي
 - ب) عرف قانون احتمال المتغير العشوائي X
 - $|E(X)| \leq 2$ التي من أجلها lpha ، ثم عين قيم lpha التي من أجلها $|E(X)| \leq 2$

التمرين الثالث: (05 نقط)

نعتبر الدالة f المعرفة على المجال $|\infty| + 1; +\infty$ [∞] ∞] ∞ المعلم المتعامد و المتجانس ∞ [∞] كما في الشكل أدناه:

$$\left\{ egin{align*} u_0 = 1 \\ u_{n+1} = \dfrac{3u_n}{u_n+1} \end{array}
ight.$$
 كمايلي: المتتالية العددية المعرفة على $\mathbb N$ كمايلي: (u_n) (u_n)

- (C_f) أعد رسم الشكل على ورقتك، ثم باستعمال المنحنى y=x والمستقيم ذو المعادلة y=x مثل على محور الفواصل الحدود الأربعة الأولى للمتتالية (u_n)
 - (دون حسابها وموضحا خطوط الإنشاء)
 - 2. ضع تخمينا حول اتجاه تغير المتتالية (u_n) وتقاربها.
 - $0 \le u_n < 2$: n عدد طبیعی انه من أجل كل عدد أبد بالتراجع أنه من أجل كل عدد التراجع أبد التراع أبد التراجع أبد التراجع أبد التراجع أبد التراجع أبد التراجع أبد
 - 4. أ) أثبت أن المتتالية (u_n) متزايدة، ثم استنتج أنها متقاربة.
 - (u_n) أوجد نهاية المتتالية
- $v_n=1-rac{2}{u_n}$:ب N بنعتبر المتتالية العددية (v_n) المعرفة على (v_n)
- .1 برهن أن المتتالية (v_n) هندسية ،يطلب تعيين أساسها و حدها الأول.

- n بدلالة n، ثم استنتج عبارة u_n بدلالة v_n
 - .lim u_n احسب
- $S_n = \frac{u_0}{u_0 2} + \frac{u_1}{u_1 2} + \frac{u_2}{u_2 2} + \dots + \frac{u_n}{u_n 2}$: عيث: S_n حيث: S_n حيث: 4.

التمرين الرابع: (07 نقط)

- $g(x) = 2lnx 1 \frac{1}{x^2}$:ب $g(x) = 2lnx 1 \frac{1}{x^2}$ بالدالة العددية g(x) معرفة على المجال (I
 - $]0;+\infty[$ بين أن الدالة g متزايدة تماما على المجال اg
- $1.89 < \alpha < 1.9$: بين أن المعادلة g(x) = 0 تقبل حلا وحيدا α حيث: 2
 - g(x) استنتج حسب قيم العدد الحقيقي الموجب تماما x إشارة
- الدالة العددية f المعرفة على المجال $]0;+\infty[$ ب: $[0;+\infty]$ الدالة العددية $[0;+\infty]$ المستوي المنسوب إلى المعلم المتعامد و المتجانس $[0;+\infty]$ المستوي المنسوب إلى المعلم المتعامد و المتجانس $[0;+\infty]$
 - - $\lim_{x\to +\infty} f(x)$ بالمال المالية بين
 - $f'(x) = \frac{1}{x^2}g(\frac{1}{x})$:]0: +∞[من أجل كل x من أجل كل x من أجل كل .2
- ب) بين أن الدالة f متزايدة تماما على المجال $[\frac{1}{\alpha}; +\infty[$ ، ومتناقصة تماما على المجال $[\frac{1}{\alpha}; +\infty[$ ثم شكل جدول تغيراتها.
 - المعادلته. (Δ) احسب (Δ) احسب (Δ) المستقيما مقاربا أن أن استنتج أن استنتج أن أن المستقيما المعادلة. أن المستقيما المعادلة معادلته.
 - (Δ) ادرس وضعية (C_f) بالنسبة إلى
 - 1 اقطاف A فاصلتها العطاف A فاصلتها العبين أن أ
 - ب) اكتب معادلة المماس ل (C_f) عند النقطة ذات الفاصلة 1
 - $(f(\frac{1}{\alpha}) \approx 0.73)$ و $\frac{1}{\alpha} \approx 0.53$ (نأخذ (C_f)) و (T)، ((Δ)) ارسم

بين أن $A=2cm^2$ ، حيث A هي مساحة الحيز المستوي المحدد ب (C_f) و (Δ) و المستقيمين ذي المعادلتين $x=e^{-1}$ و $x=e^{-1}$

إنتهى الموضوع الثاني

إذ أنت لم تزرع و أبصرت حاصدا ** ندمت على التفريط في زمن البذر

بالتوفيق في شهادة البكالوربا لله أستاذة المادة: تشوك. هـ