الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية شهداء أحداث براق القرارم قوقة

امتحان البكالوريا التجريبي للتعليم الثانوي

دورة : ماي 2022

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: 4 نقاط)

AB و B ، A ، O : نعلم أن فصائل الدم للإنسان أربعة و هي

تتوزع مجموعة من عشرة أشخاص حسب فصيلتهم الدموية كما يلي : ثلاثة أشخاص من فصيلة O ، أربعة من فصيلة A وشخصان من فصيلة B وشخص واحد من فصيلة A ، نختار عشوائيا شخصين من هذه المجموعة.

" أحسب احتمال كل من الأحداث التالية : E " الشخصان المختاران لهما نفس الفصيلة الدموية

A " الشخصان المختار ان من فصيلتين دمويتين مختلفتين " G ، " فصيلة أحد الشخصين على الأقل هي F

A نرفق الفصيلة O بالعدد A الذي يمثل عدد الفصائل التي يمكن أن تتلقى من الفصيلة A ، وهكذا نرفق الفصيلة A بالعدد A والفصيلة A بالعدد A والفصيلة A بالعدد A

نعرف المتغير العشوائي X الذي يرفق بكل اختيار لشخصين مجموع الرقمين المرفقين بفصيلتهما .

 $X \in \{3;4;5;6;8;\}$ برر أن مجموعة قيم المتغير العشوائي X هي

. X فين أن $P(X=6)=\frac{2}{5}$ و $P(X=4)=\frac{1}{3}$ ثم عين قانون الاحتمال للمتغير العشوائي

X عين الأمل الرياضى للمتغير X

A إذا علمت أن فصيلة أحد الشخصين على الأقل هي X=4

التمرين الثاني: (5 نقاط)

 $u_{n+1} = \frac{2u_n}{2u_n + 1}$ ، n عدد طبيعي عدد الأول $u_0 = \frac{1}{5}$ ومن أجل كل عدد طبيعي (u_n)

$$u_{n+1} = 1 - \frac{1}{2u_n + 1}$$
: n عدد طبیعي عدد أجل كل عدد أب أنه من أجل كل عدد الم

 $0 \le u_n \le \frac{1}{2}$: n عدد طبیعي غانه من أجل كل عدد بالتراجع أنه من أجل كل عدد بالتراجع أنه من أجل

. بين أن المتتالية (u_n) متزايدة وبرر تقاربها (2

$$v_n = \frac{3^n u_n}{2u_n - 1}$$
 لتكن المتتالية (v_n) المعرفة على مجموعة الأعداد الطبيعية كما يلي (v_n

. بين أن (v_n) متتالية هندسية أساسها 6 يطلب تحديد حدها الأول (v_n)

$$\lim_{n\to +\infty}u_n$$
 أكتب $v_n=rac{2^n}{2^{n+1}+3}:n$ عدد طبيعي عدد طبيعي واستنتج أنه من أجل كل عدد $v_n=rac{2^n}{2^{n+1}+3}$

$$S_n = \frac{1}{u_0} + \frac{1}{u_1} + \dots + \frac{1}{u_n}$$
: تحقق أنه من أجل كل n من n من n من n أحمد n ثم أكتب بدلالة n المجموع (ح

الصفحة 1 من 4

التمرين الثالث: (4 نقاط)

لكل سؤال جواب واحد صحيح من بين الأجوبة الثلاثة المقترحة ، عينه مع التعليل .

يكون $f(x) = e^{ax} + \frac{b}{x+1}$: ب $IR - \{-1\}$ و م بحيث يكون $f(x) = e^{ax} + \frac{b}{x+1}$

المماس لمنحناها في النقطة A(0;2) موازيا لحامل محور الفواصل هما:

$$b=1$$
 و $a=1$ ($a=1$ ($a=1$) $a=1$ ($a=1$) $a=1$ ($a=1$) $a=1$

$$I=rac{1}{2}\ln 11$$
 (أ $I=rac{-1}{11}$ بيكن $I=2\ln 11$ (أ قيمة I قيمة $I=\int\limits_{1}^{2}rac{6x^{2}+4x}{x^{3}+x^{2}-1}dx$ ليكن (2

$$u_n=\int\limits_1^2 x^n e^{-x} dx$$
، يلي كما يلي معرفة من أجل كل عدد طبيعي المتتالية العددية المعرفة من أجل كل عدد طبيعي (u_n

المتتالية (u_n) : أ) متزايدة (u_n) متناقصة ج

$$S_n = u_0 + u_3 + u_6 + \dots + u_{3n}$$
 متتالية حسابية معرفة بحدها الأول $S_n = u_0 + u_3 + u_6 + \dots + u_{3n}$ المجموع $S_n = (n+1)(3+3n)$ (ح $S_n = \frac{3n+1}{2}(6+6n)$ بساوي : أ

التمرين الرابع: (7 نقاط)

$$g(x) = x^2 - 2\ln x$$
: كما يلي كما يلي المعرفة على المجال ويتبر الدالة العددية g المعرفة على المجال $g(x) = x^2 - 2\ln x$ ادرس اتجاه تغير الدالة g

- . $g(x) \succ 0$:]O;+ ∞ [من أجل كل x من أجل و أستنتج أنه من أجل (2
- $f(x) = 1 x \frac{2}{x}(1 + \ln x)$:]O;+ ∞ [المعرفة على المجال f المعرفة على المجال (II) . $(O; \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)
 - $\lim_{x\to +\infty} f(x)$, $\lim_{x\to \infty} f(x)$ (1
 - $f'(x) = \frac{-g(x)}{x^2}$:]0;+∞[من x عدد کل عدد کل (1) ابین أنه من أجل کل عدد x عدد کل عدد (1) استنتج اتجاه تغیر الدالة x ثم شکل جدول تغیر اتها .
 - . (C_f) مقارب مائلا للمنحنى y=1-x مقارب مائلا للمنحنى (Δ) بين أن المستقيم (Δ). (Δ) بالنسبة إلى المستقيم (Δ).
- بين أن المستقيم (T) ذو المعادلة y=-x-1 مماس للمنحنى (C_f) عند نقطة يطلب تعيينها.
 - $0.41 \prec \alpha \prec 0.42$ بين أن المعادلة f(x) = 0 تقبل حلا وحيدا (5
 - (C_f) و (T)، (Δ) و (6).

f(x) = -x + m عدد حلول المعادلة وحسب قيم الوسيط الحقيقي m عدد حلول المعادلة

وفسر بیانیا النتیجة
$$S=-\int\limits_{\alpha}^{1}f(x)dx$$
 وفسر بیانیا النتیجة (7

انتهى الموضوع الأول

الصفحة 2 من 4

الموضوع الثاني

التمرين الأول: (4 نقط)

أجب بصح أو خطأ على كل اقتراح من الاقتراحات التالية مع التعليل .

 $g(x)=x^2+\ln x$: نعتبر الدالة العددية g المعرفة على المجال $g_{;+\infty}$ كما يلي $g_{;+\infty}$ المعادلة g(x)=1 تقبل حلا وحيدا g(x)=1 في المجال g(x)=1

$$\lim_{x \to 0} \frac{x + e^{1 + 2\ln x}}{x} = e$$
 (2

 $m=2\sqrt{5}+3$ (هي: $f(x)=x^3+rac{1}{\sqrt{x}}$ حيث $f(x)=x^3+rac{1}{\sqrt{x}}$ على المجال $f(x)=x^3+rac{1}{\sqrt{x}}$ حيث والمتوسطة $f(x)=x^3+rac{1}{\sqrt{x}}$

$$u_n = \int_{a^n}^{e^{n+1}} \frac{2}{x} \ln x dx$$
 متتالية عددية معرفة على مجموعة الأعداد الطبيعية كما يلي متتالية عددية معرفة على مجموعة الأعداد الطبيعية كما يلي

r=2 متتالیة حسابیة أساسها (u_n)

التمرين الثانى: (4 نقاط)

يحتوي كيس على 9 كرات (y نفرق بينها باللمس) ، ثلاثة بيضاء مرقمة 1،1،2 و أربعة كرات حمراء مرقمة 1،1،2 و اثنان خضراء مرقمة 2.3 .

1) نسحب من الكيس عشوائيا ثلاث كرات في أن واحد .

لتكن الحوادث التالية: A" الكرات الثلاثة المسحوبة من نفس اللون "

" الكرات الثلاثة المسحوبة مختلفة اللون مثنى مثنى مثنى " الكرات الثلاثة المسحوبة تحمل نفس الرقم " B

B احسب احتمال الحادثة A واحتمال الحادثة

$$P(B \cap C) = \frac{1}{84}$$
بين أن

ج) أستنتج احتمال الحادثة " الكرات الثلاثة المسحوبة مختلفة اللون مثنى مثنى أو تحمل نفس الرقم "

2) نُسُحب مَن نفس الكيس كرتين على التوالي وبدون إرجاع . نفرض أنه عند سحب كرة تحمل رقماً زوجيا نخسر (10) نقاط وعند سحب كرة تحمل رقماً فرديا نربح (5) نقاط .

نعتبر المتغير العشوائي X الذي يرفق بكل سحب كرتين مجموع النقاط المحصل عليها.

 $X \in \{-20;+10;-5\}$ أ $X \in \{-20;+10;-5\}$ أي برر أن مجموعة قيم المتغير العشوائي

X عين قانون الاحتمال للمتغير العشوائي

ج) عين الأمل الرياضي للمتغير X ماذا تستنتج ؟

التمرين الثالث: (5 نقاط)

 $u_{n+1}=rac{3}{4}u_n+2$ ، n عدد طبيعي $u_0=1$ المتتالية العددية المعرفة بحدها الأول $u_0=1$ ومن أجل كل عدد طبيعي $u_n=1$

 u_3 و u_2 ، u_1 ، u_0 عند حساب على حامل محور الفواصل الحدود (Δ) و (Δ) باستعمال (Δ) باستعمال (Δ) و و

الصفحة 3 من 4

. ثم ضع تخمينا حول اتجاه تغير المتتالية (u_n) وتقاربها

$$u_n \prec 8$$
 : n عدد طبیعی أ) بر هن بالتراجع أن: من أجل كل عدد طبیعی بين أن المتتالية (u_n) متزايدة تماما ثم استنتج أنها متقاربة .

$$v_n = \ln(8-u_n)$$
 لتكن المتتالية (v_n) المعرفة على مجموعة الأعداد الطبيعية كما يلي المعرفة على مجموعة (3

. يين أن
$$(v_n)$$
 متتالية حسابية أساسها $1n \frac{3}{4}$ يطلب تحديد حدها الأول (v_n)

$$u_n = 8 - 7 \left(\frac{3}{4}\right)^n$$
: n عدد طبیعي v_n بدلالة n واستنتج أنه من أجل كل عدد طبیعي v_n

$$P_n = \frac{1}{8 - u_0} imes \frac{1}{8 - u_1} imes \dots imes \frac{1}{8 - u_n}$$
 کتب بدلالة n اکتب بدلالة n الجداء:

التمرين الرابع: (7 نقاط)

 $f(x)=x+rac{e^x-1}{e^x+1}$: كما يلي : $\mathbb R$ كما يلي مجموعة الأعداد الحقيقية

 $(2cm: الوحدة). (O; \overrightarrow{i}, \overrightarrow{j})$ وليكن والمتجانس (الوحدة). والمتجانس (الوحدة) المعلم المتعامد والمتجانس (الوحدة) المعلم المعلم

بین أنه من أجل كل عدد حقیقي ،
$$f(x)+f(-x)=0$$
 ، فسر بیانیا النتیجة (1

$$\lim_{x\to -\infty} f(x)$$
و أحسب (2) اأحسب (2) اأحسب (2

$$+\infty$$
 بين أن المستقيم (C_f) ذو المعادلة $y=x+1$ مقارب مائل للمنحنى بين أن المستقيم (Δ') بجوار (C_f) بجوار (C_f) بجوار مائل للمنحنى (C_f) بجوار (Δ') بجوار (Δ') أدر س وضعية المنحنى (C_f) بالنسبة إلى كل من المستقيمين (Δ') و (Δ') .

$$f'(x)=1+\frac{2e^x}{(1+e^x)^2}$$
: x عدد حقیقی عدد کل عدد (4

 \mathbf{p} استنتج اتجاه تغیر الدالهٔ f و شکل جدول تغیر اتها .

ج) بين أن المنحنى $\binom{C_f}{f}$ يقبل نقطة انعطاف هي مبدأ المعلم

$$(C_f)$$
 انشئ کلا من (Δ') ، (Δ) والمنحنى (5)

$$IR$$
 على $h: x \mapsto \frac{1}{e^x+1}$ المالية للدالة أصلية للدالة $h: x \mapsto x - \ln(e^x+1)$ على (6) بين أن الدالة $h: x \mapsto x - \ln(e^x+1)$ على المعادلتين (C_f) والمستقيم (C_f) والمستقيمين ذو المعادلتين

$$(C_f)$$
 احسب مساحه الحيز المستوي المحدد بالمنحنى (C_f) والمستقيم (Δ) و المستقيمين دو المعادلتين $x = \ln 2$ و $x = 0$

$$g(x) = -x + \frac{1 - e^x}{1 + e^x}$$
: كما يلي IR كما يلي g (7

$$g(x) = f(-x)$$
 بین أنه من أجل كل x من IR من $reve{A}$

بق استنتج طريقة لرسم (C_g) اعتمادا على (C_f) دون رسمه.

انتهى الموضوع الثاني