بية و التعليم الخاصة متوسط القامة القامة

قم الهلاف: 32 22 47 0550 47 233 فاكس: 99mail.com 023 71 54 67 و9mail.com 023 71 54 67

فيفري 2022

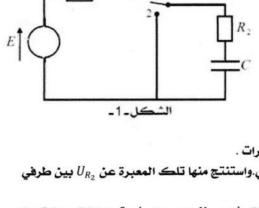
المدة: ساعتين.

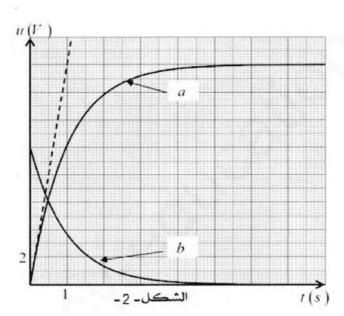
المستوى: الثالثة رياضيات

فرض الفصل الثاني في مادة الفيزياء

التمرين 1:

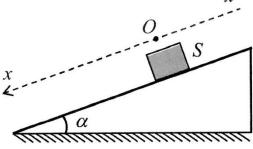
الجزء الأول (13ن)


التمرين الأول: (06نقاط)


نعتبر الدارة الكهربائية الممثلة في الشكل (1) ، المكونة من:

- مولد توتر قوته المحركة الكهربائية .
- ناقلان أوميان مقاومتيهما $R_1 = 75 k\Omega$ و R_2 مجهولت.
 - مكثفة سعتها C ،غير مشحونة.
 - Kill .
- 1. عند اللحظة t=0 ، نضع البادلة K على الوضع t أعد نقل الدارة الكهربائية ومثل عليها جهة التيار، و جهة التوترات .
- أ- أوجد المعادلة التفاضلية التي تحققها شدة التيار الكهربائي. واستنتج منها تلك المعبرة عن U_{R_2} بين طرفي الناقل الأومي R_2 .
- ب- حل المعادلة التفاضلية U_{R_2} يمكن كتابتها من الشكل $U_{R_2}=ke^{-eta t}$. عبر عن k و k بدلالة مميزات عناصر الدارة.
 - بارة التوتر الكهربائي بين طرفي المكثفة (عيد المكثفة عبارة التوتر الكهربائي بين طرفي المكثفة (عيد التوتر الكهربائي بين طرفي المكثفة (عيد التوتر ال
 - 2. يسمح راسم الاهتزاز المهبطي ذو ذاكرة بمعاينة التوترين السابقين u_{R_2} و u_{R_2} . (الشكل-2-)
 - y_1 وضح برسم كيفي كيفية ربط الجهاز U_{R_2} على U_{R_2} على U_{R_2} على المدخل المعاينة
 - ب- أنسب لكل مدخل التوتر المناسب.
 - E: اعتمادا على الشكل حدد قيم كل من E: R_2
 - 3. عندما تصبح المكثفت مشحونة ننقل البادلة إلى الوضع (2) في لحظة نعتبرها مبدا جديد للزمن ، تصبح العبارة

 $U_{R_2} = -Ee^{-rac{t}{ au_2}}$: اللحظيم


- أ- كيف تفسر إشارة التوتر . U_{R2}
- ب- في هذه الحالة وضح على الشكل توجيه كل من شدة التيار والتوتر الكهريائي .

التمرين 2:

ندرس في هذا التمرين انزلاق جسم صلب (S) على مستو مائل (S) على الأفق بزاوية α بدون احتكاك. χ'

I ـ الدراسة التجريبية:

نحرر الجسم من قمة المستوي المائل من السكون ليتحرك، بعد تشغيل كاميرا رقمية من أجل تسجيل الحركة. و بواسطة برنامج إعلام آلي نسجل فواصل مواضع مركز العطالة G للجسم G خلال فترات زمنية متتالية و متساوية بالنسبة للمحور G الموازي لمسار مركز العطالة G ، و بأخذ مبدأ الأزمنة لحظة مرور هذا الأخير بمبدأ الفواصل G فتحصلنا على النتائج التالية.

الموضع	M_{0}	M_1	M_2	M_3	M_4	M_{5}	M_{6}	M_{7}
t(s)	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7
x(cm)	0	6	16	26	40	54	72	90

1- أكمل الجدول.

2. أرسم المنحنى البياني v = f(t) استنتج طبيعة الحركة.

$$1cm
ightarrow 0,4\, m\, s^{-1}$$
 و $1cm
ightarrow 0,1\, s$ سلم الرسم:

 v_0 لين من المنحنى البياني التسارع $a_{\rm G}$ لمركز العطالة G ، و قيمة السرعة الابتدائية و v_0 في اللحظة t=0 .

t=0,7s عند اللحظة 4.

II ـ الدراسة النظرية:

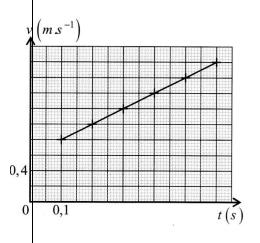
(S) القوى الخارجية المؤثرة على الجسم (S).

ية بتطبيق القانون الثاني لنيوتن على الجسم (S) جد العبارة الحرفية للتسارع بدلالة زاوية a_{G} بدلالة زاوية وتسارع الجاذبية الأرضية g .

3 أحسب قيمة الزاوية α.

 $g = 10 \, m \, s^{-2}$: تعطی

تصحيح الفرض الثاني في الفيزياء


التمرين 1: كيفية حساب السرعة : نختار نقطة قبلها وأخرى بعدها. إملاء الجدول:

الموضع	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7
الزمن	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7
X	0	6	16	26	40	54	72	72
V		0.8	1	1.2	1.4	1.6	1.8	

معادلة البيان:

معادلة البيان:

V=2t+0.6 إنها من الشكل

السرعة الابتدائية تساوي 0.6 متر على الثانية.

حساب السرعة لما الزمن 0.7 ثانية بالتعويض نجد 2 متر على 4-الثانية

الدراسة النظرية: المرجع سطحي أرضي الذي نعتبره غاليليا . بتطبيق القانون الثاني لنيوتن.

بالإسقاط على محور موجه في اتجاه الحركة:

ومنه a=g $\sin \alpha$ mg $\sin \alpha$ =ma

 $\sin \alpha = \frac{2}{10} = 0.2$ ومنه $\sin \alpha = \frac{2}{10}$

االتمرين 2

- يعاكس شدة التيار اما u_c يعاكس التيار كذلك . اما توتر المولد له نفس جهة التيار .
 - التيار لشدة التفاضلية المعادلة

 $.rac{di}{dt}$ $+rac{1}{ au}$ i=0 ومنه R_1 i+ R_2 i+ $rac{q}{c}$ =E R_2 I_0 ومنه R_1 i+ R_2 i+ R_2 i+ R_3 e R_3 i k= R_3 R_3 e R_3 i k= R_3 R_3 e R_3 e R

 U_{C} =E(1- $e^{-\frac{t}{ au}}$) ج- عبارة التوتر الكهربائي بين طرفي المكثفة

التركيب Y_1 التوتر بين طرفي المكثفة البيان Y_1 والمدخل Y_2 التوتر بين طرفي المقاومة المنحنى $U_{\rm R_2}=R_2\;I_0$ أما $U_{\rm C}=0$ فان $U_{\rm C}=0$

 $ext{C=0.005F} \qquad I_0 = 0.08 A \qquad ext{E=16V} \qquad ext{output}$ من البيان

تيار التفريغ يكون سالب وبالتالي اشارة التوتر سالبة.