ثانوية القديس او غستان عنابة الدراسية : 2020/2019

الشعبة: 3 تقنى رياضى

احتبار الثلاثي الأول في ماحة الرياضيات

التمرين الأول (08ن):

دالة عددية معرفة على $_{\mathbb{R}}$ ، و $_{(\psi)}$ تمثيلها البياني في مستوي منسوب الى معلم متعامد و متجانس $_{(\bar{o};\bar{i};\bar{j})}$.

- بقراءة بيانية:
- . f'(0) و $f'(\ln 4)$ عين
- . $_{0}$ عند النقطة ذات الفاصلة $_{(\psi)}$ عند النقطة ذات الفاصلة -2
 - . (Δ) عين معادلة للمستقيم
 - مستقیم معادلته : $y = \frac{m}{2}x + m$ وسیط حقیقی 4-4
- 5- بين أن كل المستقيمات (T_m) تمر من نقطة ثابتة A يطلب تعيين احداثياها .
- . $f(x) = \frac{m}{2}x + m$: عدد و اشارة حلول المعادلة عدد و اشارة حلول المعادلة -6
 - . h(x) = f(|x|) : بالدالة المعرفة على \mathbb{R} بالدالة المعرفة على الدالة الدالة المعرفة على الدالة المعرفة على الدالة الدالة المعرفة على الدالة الد
- B(0,1) ، مع النقطة B(0,1) ، ماذا يمكن القول عن النقطة B(0,1) ، مع التعليل.
 - $_h$ دالة زوجية .
 - . الممثل المثل المثل الدالة المثل المثل المثل المعلم (γ) الممثل المعلم .

التمرين الثاني (12ن):

المنحني الممثل للدالة f (I) المنحني الممثل للدالة f (I) المنحني الممثل للدالة f (I) المستوي المنسوب إلى المعلم المتعامد المتجانس f (I) ادر س تغیّرات الدالة f . (I) ادر س تغیّرات الدالة I) ادر س تغیّرات الدالة I .

. $f(x) = -\frac{1}{2}x + \frac{1}{2}\ln(1+e^x)$ ، x عدد حقیقی عدد عدد عقیقی) أ- بین أنه ، من أجل كل عدد حقیقی (2

. $-\infty$ بجوار (C_f) الذي معادلته $y=-\frac{1}{2}x$ هو مستقيم مقارب مائل للمنحني (D) بجوار (D) بجوار (D) بجوار (D) بخوار (D) بخوار

. $\left(\left. C_f \right) \right.$ و $\left(D \right)$ انشئ (3

. $g(x) = \frac{1}{2} \ln(1 + e^{|x|})$: بعتبر g الدالة العددية للمتغيّر الحقيقي x المعرفة على g بين أن الدالة g زوجية .

. المعلم المناق g في نفس المعلم السابق و (C_g) ، ارسم المناق المناق في نفس المعلم السابق .

. α عند أن المعادلة α عند أن المعادلة α تقبل في المجال]0;1 حلا وحيد (1 (α

. $|f'(x)| \le \frac{1}{4}$ ، $x \ge 0$ کل کا من أخل بين أنه ، من أجل كل

. $|f(x) - \alpha| \le \frac{1}{4} |x - \alpha|$ ، $x \ge 0$ کل عن أجل كل . من أجل كل

. $u_{n+1}=f\left(u_{n}\right)$ ، n عدد طبيعي $u_{0}=0$: $u_{0}=0$ المتتالية العددية المعرفة ب $u_{0}=0$: $u_{n}\geq0$ ، $u_{n}\geq0$ ، من أجل كل عدد طبيعي أ - أثبت أنه ، من أجل كل عدد طبيعي

. $|u_{n+1}-\alpha| \leq \frac{1}{4}|u_n-\alpha|$ ، n عدد طبیعی عدد طبیعی بن أنه ، من أجل كل عدد طبیعی

. $|u_n - \alpha| \le \left(\frac{1}{4}\right)^n$ ، n عدد طبیعی عدد من أجل كل عدد عدد استنتج أنه ، من أجل كل عدد عدد عدد استنتج

. + ∞ الحسب نهاية المتتالية (u_n) عندما يؤول الحسب نهاية المتتالية

بالتوفيق للجميع استاذة المادة

3as.ency-education.com